طراحی حسگر نوری مبتنی بر نانوذرات طلا جهت آشکارسازی مقادیر ناچیز فلزات سنگین در نمونه‌های آبی

نوع مقاله : مقاله علمی پژوهشی

نویسنده

دانشگاه پیام نور، تهران، ایران

چکیده

چکیده
به دلیل اثرات مخربی که یونهای فلزات سنگین بر سلامتی انسان دارند ارائه یک روش ساده و ارزان برای آشکارسازی و اندازه گیری آن ها در محیط آبی، یکی از زمینه های مهم تحقیقاتی می باشد. در کار حاضر، یک حسگر رنگ سنجی ساده برپایه نانوذرات طلا پایدارشده با کیتوزان برای آشکارسازی و اندازه گیری یونهای فلزات سنگین در آب ارائه شد. این یون های فلزی ازطریق واکنش کی لیت که بین کیتوزان و یون فلزی رخ می دهد باعث تجمع نانوذرات طلا- کیتوزان می شوند. حساسیت حسگر نسبت به یون های Cu2+، Ni2+، Pb2+، Cd2+ و Hg2+ بررسی شد. نتایج نشان داد که یونهای فلزی مختلف باعث میزان کاهش متفاوتی در نوار پلاسمون می شوند. حدتشخیص برای هریک از یونهای مس، نیکل، سرب، کبالت، کادمیم و جیوه به ترتیب 2.48 ، 0.27 ، 0.25، 0.40 ، 0.28 و 1.43 به دست آمد. این حسگر نوری بشترین حساسیت را نسبت به یون +Pb2 نشان داد. با توجه به نتایج، این حسگر می تواند به طور موفقیت آمیزی برای آشکارسازی یونهای فلزات سنگین در نمونه های آب و پساب به کار رود.

کلیدواژه‌ها


عنوان مقاله [English]

Design of an optical sensor based on gold nanoparticles for detecting trace amounts of heavy metals in water samples

نویسنده [English]

  • Faten Divsar
department of chemistry, Payame Noor University, PO BOX 19395-3197, Tehran , Iran
چکیده [English]

Abstract
Due to the destructive effects of heavy metal ions on human health, providing a simple and inexpensive way to detect and measure them in an aquatic environment is one of the important research areas. In the present work, a simple optical sensor based on gold nanoparticles with chitosan was introduced to detect and measure heavy metal ions in water. These metal ions result in the accumulation of gold-chitosan nanoparticles through the chelating reaction between chitosans and metal ions. The sensitivity of the sensor was investigated for Cu2+, Ni2+, Pb2+, Cd2+ and Hg2+ ions. The results showed that different metal ions cause a different reduction in the plasmon bar. The detection limit for each copper, nickel, lead, cobalt, cadmium and mercury ions was 2.48, 0.27, 0.25, 0.40, 0.28 and 1.43, respectively. This optical sensor showed the most sensitivity to Pb2+ ions. According to the results, this sensor can successfully be used to detect heavy metal ions in water and wastewater samples.

کلیدواژه‌ها [English]

  • Key words: Optical sensor
  • Gold nanoparticles
  • Heavy metal ions
[1] S. Rodriguez-Mozaz, M.P. Marco, M.J.L. Alda and D. Barceló, Talanta, 65 (2005) 291.
[2] N. Verma and M. Singh, BioMetals, 18 (2005) 121.
[3] F. Divsar, K. Habibzadeh, S. Shariati and M. Shahriarinour, Anal. Methods, 7 (2015) 4568.
[4] Y. Ma, L. Jiang, Y. Mei, R. Song, D. Tian and H. Huang, Analyst, 138 (2013) 5338.
[5] A.J. Haes and R.P. Van Duyne, J. Am. Chem. Soc., 124 (2002) 596.
[6] L. Wang and E. Wang, Electrochem. Commun., 6 (2004) 225.
[7] S. Xu and X. Han, Biosens. Bioelectron., 19 (2004) 1117.
[8] J. Liu and Y. Lu, J. Am. Chem. Soc., 125 (2003) 6642.
[9] M. Huang, Y. Shao, X. Sun, H. Chen, B. Liu and S. Dong, Langmuir, 21 (2005) 323.
[10] K.R. Gopidas, J.K. Whitesecl and M.A. Fox, Nano Lett., 3 (2003) 1757.
[11] A. Gole, C. Dash, V. Ramakrishnan, S.R. Sainkar, A.B. Mandale, M. Rao and M. Sastry, Langmuir, 17 (2001) 1674.
[12] Y. Xiao, H.X. Ju and H.Y. Chen, Anal. Chim. Acta, 391 (1999) 73.
[13] J. Jia, B.Wang, A.Wu, G. Cheng, Z. Li and S. Dong, Anal. Chem., 74 (2002) 2217.
[14] T. Niazov, V. Pavlov and Y. Xiao, Nano Lett., 4 (2004) 1683.
[15] Y. Zhou, R. Yuan, Y. Chai, D. Tang, Y. Zhang, N. Wang, X. Li and Q. Zhu, Electrochem. Commun., 7 (2005) 355.
[16] U. Kreibig, M. Vollmer, Cluster Materials, Heidelberg: Springer,(1995), 25.
[17] M.C. Daniel and D. Astruc, Chem. Rev., 104 (2004) 293–346.
[18] B. Sadtler and A. Wei, Chem. Commun., 15 (2002) 1604–1605.
[19] K. Esumi, N. Takei and T. Yoshimura, Colloids Surf. B, 32 (2003) 117–125.
[20] S. Nagib, K. Inoue, T. Yamaguchi and T. Tamaru, Hydrometallurgy, 51 (1999) 73.
[21] M. Weltrowski, B. Martel and M. Morcellet, J. Appl. Polym. Sci., 59 (1996) 647.
[22] G.L. Rorrer, T.-Y. Hsien and J.D. Way, Ind. Eng. Chem. Res., 32 (1993) 2170.
[23] J.R. Evans, W.G. Davids, J.D. MacRae and A. Amirbahman, Water Res. 36 (2002) 3219.
[24] T.-Y. Hsien and G.L. Rorrer, Ind. Eng. Chem. Res., 36 (1997) 3631.
[25] R.W. Coughlin, M.R. Deshaies and E.M. Davis, Environ. Prog., 9 (1990) 35.
[26] J.C.Y. Ng, W.H. Cheung and G. McKay, J. Colloid Interf. Sci., 255 (2002) 64.
[27] A. Findon, G. McKay and H.S. Blair, J. Environ. Sci. Health Part A, 28 (1993) 173.
[28] R. Bassi, S.O. Prasher and B.K. Simpson, Sep. Sci. Technol., 35 (2000) 547.
[29] M. Weltrowski, B. Martel and M. Morcellet, J. Appl. Polym. Sci., 59 (1996) 647.
[30] R. Maruca, B.J. Suder and J.P. Wightman, J. Appl. Polym. Sci., 27 (1982) 4827.