بررسی کارایی نانوکاتالیست مس -آهن در هیدرولیز سدیم بوروهیدرید و تولید هیدروژن

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 گروه مهندسی شیمی، دانشگاه آزاد اسلامی واحد رباط کریم، رباط کریم، ایران

2 گروه شیمی فیزیک- دانشکده علوم پایه- دانشگاه تربیت مدرس- تهران

چکیده

برای استفاده از هیدروژن به عنوان یک سوخت پاک، گسترش سیستم‌های کارآمد برای تولید و ذخیره‌سازی آن الزامی است. هیدرولیز سدیم بوروهیدرید (4NaBH) یکی از روش‌های مناسب برای تولید هیدروژن است اما نیاز به استفاده از فلزات نجیب گران‌قیمت به عنوان کاتالیست توسعه‌ی این فرایند را محدود می‌سازد. در این تحقیق به منظور گسترش کاتالیست‌های فلزی غیرنجیب با قیمت پایین و فعالیت کاتالیستی و پایداری بالا در هیدرولیز 4NaBH، نانوکاتالیست مس-آهن (Cu-Fe) با نسبت‌های مولی (1:1)، (3:1) و (1:3) سنتز شده و کارایی آنها نسبت به یکدیگر و نسبت به مس خالص مقایسه شده است. بر اساس نتایج حاصله، نانوکاتالیست دوتایی مس-آهن با نسبت مولی (1:1) در مقایسه با سایر کاتالیست‌های سنتز شده و مس خالص از بیشترین مساحت ویژه (g/2m 4/170) برخوردار است. میزان هیدروژن تولید شده از هیدرولیز 4NaBH در سطح این کاتالیست نیز پنج برابر میزان هیدروژن تولیدی در سطح مس خالص است. همچنین تاثیر وجود چند پایدارکننده‌ی مختلف مانند پلی‌وینیل‌پیرولیدون (PVP)، تترادسیل‌تری‌متیل آمونیوم بروماید (TTAB)، 100Triton X- و سدیم دودسیل بنزن سولفونات (SDBS) بر فعالیت نانوکاتالیست (1:1) Cu:Fe نیز بررسی شده است. متوسط مقدار هیدروژن تولید شده از هیدرولیز 4NaBH در سطح نانوکاتالیست (1:1) Cu:Fe پایدار شده با 100Triton X-، به میزان 35% از متوسط هیدروژن تولید شده در سطح نانوکاتالیست (1:1) Cu:Fe سنتز شده بدون پایدارکننده بیشتر است. همچنین این کاتالیست پایداری خوبی داشته و پس از پنج بار استفاده همچنان 70% فعالیت اولیه خود را حفظ کرده است. بنابراین نانوکاتالیست (1:1) Cu:Fe پایدار شده با 100Triton X- می‌تواند به عنوان یک کاتالیست مناسب برای هیدرولیز 4NaBH و تولید هیدروژن مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation the performance of cupper-iron nano-catalyst in sodium borohydride hydrolysis and hydrogen generation

نویسندگان [English]

  • Mitra Amani 1
  • Sadegh Sadeghi 2
1 Department of chemical engineering, Azad university, Robat karim branch
2 Physical chemistry group, Faculty of science, Tarbiat modarres university, Tehran
چکیده [English]

Use of environmentally friendly hydrogen (H2) as a clean fuel in massive scale requires safe and efficient storage and generation systems. Sodium borohydride (NaBH4) hydrolysis is one of suitable methods for Hydrogen production. However, requirement to expnsive noble metals catalysts limits its commercial usage. In this research, for development of cheap non-noble metal catalysts with high activity and stability, cupper- iron nano catalysts (Cu-Fe) with different mole ratios of (1:1), (3:1) and (1:3) were synthesized and their performane are compared with each other and with pure Cu. According to obtained results, Cu-Fe catalyst with 1:1 mole ratio has the largest specific surface area (170.4 m2/g) in comparision with other sysnthesized catalysts and pure Cu. Hydrogen generation over this catalyst is five times more than produced hydrogen over pure Cu. Then, effect of some stablizers such as Polyvinylpyrrolidone (PVP), tetradecyltrimethylammo- nium bromide (TTAB), sodium dodecyl benzene sulphonate (SDBS) and Triton X-100 on Cu:Fe (1:1) performanec are investigated. It was shown that produced hydrogen over Cu:Fe (1:1) stablized Triton-X-100 catalyst is 35% higher than Cu:Fe (1:1) catalyst without stabilizer. Also, the stability of this catalyst is significat and it maintains 70% of its original activity after five usage periods of NaBH4 hydrolysis. Ultimatley, Cu:Fe (1:1) stablized Triton-X-100 nano catalyst can be utilized as an active and stable catalyst for NaBH4 hydrolysis and H2 generation.

کلیدواژه‌ها [English]

  • Sodium borohydride
  • Hydrogen
  • Nano catalyst
[1] X. Wang, J. Liao, H. Li, H. Wang, R. Wang, B.G. Pollet, S. Ji, Int. J. Hydrogen Energy, 43 (2018) 17543.
[2] B. Chen, S. Chen, H.A. Bandal, R. Appiah-Ntiamoah, A.R. Jadhav, H. Kim, Int. J. Hydrogen Energy, 43 (2018) 9296.
[3] K. Li, M. Ma, L. Xie, Y. Yao, R. Kong, G. Du, A.M. Asiri, X. Sun, Int. J. Hydrogen Energy, 42 (2017) 19028.
[4] A. Mansour, F. Mojtaba, Gh. Ali, J. Of Applied Chemistry, 30 (1393) 79, in persian.
[5] M. Rivarolo, O. Improta, L. Magistri, M. Panizza, A. Barbucci, Int. J. Hydrogen Energy, 43 (2018) 1606.
[6] S.-C. Li, F.-C. Wang, Int. J. Hydrogen Energy, 41 (2016) 3038.
[7] C.-C. Chou, C.-H. Hsieh, B.-H. Chen, Energy, 90 (2015) 1973.
[8] S. Duman, S. Özkar, Int. J. Hydrogen Energy, 43 (2018) 15262.
[9] J.C. Ingersoll, N. Mani, J.C. Thenmozhiyal, A. Muthaiah, J. of Power Sources, 173 (2007) 450.
[10] G.R.M. Tomboc, A.H. Tamboli, H. Kim, Energy, 121 (2017) 238.
[11] A. Tamboli, A. Chaugule, F. Sheikh, W.-J. Chung, H. Kim, Energy, 89 (2015) 568.
[12] Y.-J. Shih, C.-C. Su, Y.-H. Huang, M.-C. Lu, Energy, 54 (2013) 263.
[13] Z. Liu, B. Guo, S.H. Chan, E.H. Tang, L. Hong, J. of Power Sources, 176 (2008) 306.
[14] A. Serdar, T. Seda, M. İzzet, Ö. Saim, Int. J. Hydrogen Energy, 39 (2014) 9628.
[15] Y. Wang, G. Li, S. Wu, Y. Wei, W. Meng, Y. Xie, Y. Cui, X. Lian, Y. Chen, X. Zhang, Int. J. Hydrogen Energy, 42 (2017) 16529.
[16] Al. Shaeel, A. Zaheer, M.Maqsood Ahmad, Int. J. Hydrogen Energy, 44 (2019) 16452.
[17] A. Zaleska-Medynska, M. Marchelek, M. Diak, E. Grabowska, Adv. Colloid Interface Sci., 229 (2016) 80.
[18] B.Gamze, Ö.Abdulkadir, Y.Ayşe Bayrakçeken, Int. J. Hydrogen Energy, 43 (2018) 22205.
[19] S.-C. Lin, S.-Y. Chen, Y.-T. Chen, S.-Y. Cheng, J. Alloys Compd., 449 (2008) 232.
[20] S. Senapati, S.K. Srivastava, S.B. Singh, H.N. Mishra, J. Mater. Chem., 22 (2012) 6899.
[21] A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová, V.K. Sharma, T.j. Nevěčná, R. Zbořil, J. Phys. Chem. B, 110 (2006) 16248.
[22] C. Saka, Ö. Şahin, H. demir, A. Karabulut, A. Sarikaya, Energy Sources, Part A, 37 (2015) 956.
[23] Ö. Şahin, D. Kilinç, C. Saka, Sep. Sci. Technol., 50 (2015) 2051.
[24] L. Mohammad Hassan, S. F. Abdollah, K.Morteza. Energy, 126 (2017) 830.
[25] A.H. Didehban, M. Zabihi, J. Rahbar Shahroozi, J. of Chemical Engineering, 96 (1397) 68, in Persian.
[26] L. Yan, W. Ping, D. Hong-Bin, J. Alloys Compd., 491 (2010) 359.
[27] B. Gamze, Ö.Abdulkadir, Y. Ayşe Bayrakçeken, Energy, 180 (2019) 702.
[28] F. Dehghani Sanij. H. Gharibi, Colloids Surf., A, 538 (2018) 429.
[29] G.Manyi, Y.Weiwei, Y.Yongsheng, Int. J. Hydrogen Energy, 43 (2018) 14293.
[30] M. Khatami, H. Heli, P.M. Jahani, H. Azizi, M.A.L., IET Nanobiotechnol., 11 (2017) 709.
[31] C.Chun-Ta, L.Chen-An, T.Muoi, C.Yan-Ping, J. CO2 Util., 18 (2017) 173.
[32] W. Kugler, Adv. X-Ray Anal., (2003) 46.
[33] P. He, X. Shen, H. Gao, J. Colloid Interface Sci., 284 (2005) 510.
[34] J. Sha, , S. Paul, F. Dumeignil, R. Wojcieszak, RSC Adv.,9 (2019) 29888.
[35] N. Patel, R. Fernandes, and A. Miotello, J. Catal., 271 (2010) 315.
[36] Y. P.Wang, Y. J.Wang, Q.L. Ren, L. Li, L.F. Jiao, D.W. Song, G. Liu, Y. Han, H.T. Yuan, Fuel Cells, 10 (2010) 132.
[37] Y. Song, G. Liang, Y. Yang, X. Lan, W.Gao, J. Yang, J. Exp. Nanosci., 6 (2011) 263.
[38] J. Eastoe, R.F. Tabor, Colloidal Foundations of Nanoscience (Chapter 6), Elsevier (2014) pp.135.
[39] I.G. Godinez, C.J. Darnault, Water Res., 45 (2011) 839.
[40] D. Wang, V. L. Dimonie, E.D. Sudol, M.S. El-Aasser, J. Appl. Polym. Sci., 84 (2002) 2721.
[41] P. Sarrazin, D. Chaussy, L. Vurth, O. Stephan, D. Beneventi, Langmuir, 25 (2009) 6745.
[42] L. Yang, K. Du, X.S. Zhang, B. Cheng, Appl. Therm. Eng., 31 (2011) 3643.
[43] W. Wang, Y. Song, Q. Liu, K. Yang, Bull. Mater. Sci., 37 (2014) 797.
[44] R. Etefagh, E. Azhir, N. Shahtahmasebi, Sci. Iran., 20 (2013) 1055.
[45] A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Results Phys., 7 (2017) 3007.
[46] M. Zhu, Z. Li, B. Xiao, Y. Lu, Y. Du, P. Yang, X. Wang, ACS Appl. Mater. Interfaces, 5 (2013) 1732.
[47] F. O. Baydaroglu, E. Özdemir, A.G. Gürek, React. Kinet., Mech. Catal., 122 (2017) 575.
[48] C. Wang, Y. Wang, M. Chen, J. Hu, Z. Yang, H. Zhang, J. Wang, Sh. Liu, Int. J. Hydrogen Energy, 44 (2019) 26888.
[49] Y.H. Huang, Ch.C. Su, S-L. Wang, M-C. Lu, Energy, 46 (2012) 242.
[50] X. Zhang, Ch. Li, J. Qu, Q. Guo, K. Huang, Carbon Res. Convers., 2 (2019) 225.
[51] X-L. Ding, X. Yuan, Ch. Jia, Z-F. Ma, Int. J. Hydrogen Energy, 35 (2010) 11077.
[52] A. Balbay, C. Saka, Energy Sources, Part A, 40 (2018) 794.
[53] W. Gouveia, M. Bello, A. Balčiūnaitė, S. Eugénio, D.M.F. Santos, ECS Trans., 86 (2018) 603.