سنتز سه جزئی، سبز و تک ظرف مشتقات بنزو[b]پیران و پیرانو[c]کرومن با استفاده از نانوذرات فسفو تنگستیک اسید کپسوله شده در نانوسلیکای عامل دار شده با پلیمر دندریتیک (Dendrimer-PWAn) تحت تابش فراصوت در محیط آب

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشکده شیمی، دانشگاه پیام نور، تهران، ایران

2 دانشگاه شیراز- بخش شیمی

3 گروه شیمی، دانشگاه نفت گچساران

4 گروه شیمی واحد گچساران، دانشگاه آزاد اسلامی، گچساران، ایران

چکیده

یک روش موثر و دوست دار محیط‌زیست برای سنتز مشتقات مختلف تتراهیدروبنزو [b] پیران و 3،4-دی هیدروپیرانو [c] کرومن در حضور نانوذرات Dendrimer-PWAn به‌عنوان کاتالیزور در دمای اطاق توسط واکنش سه جزئی آلدهید، مالونونیتریل و دیمدون یا 4-هیدروکسی کومارین تحت تابش امواج فراصوت در محیط آب توسعه داده شد. برای ساخت این کاتالیزور نانوذرات H3PW12O40 (PWAn) تهیه‌شده به روش حلالی-حرارتی روی نانوسیلیکای عامل دار شده با پلیمر دندریتیک قرار گرفت. این کاتالیزور از نوع مزوحفره و اندازه ذرات آن nm 40 است. متوسط شعاع حفره‌ها، سطح BET و حجم حفره‌های این کاتالیزور به ترتیب nm 1/6، m2/g 479 و cm3 6/0 می‌باشد. مقادیر PWAn الحاق شده بر سطح کاتالیزور %7/39 وزنی (معادل mmol/g 14/0) می‌باشد. روش ابداع‌شده نه تنها برای آلدهیدهای آروماتیک مناسب است بلکه به طور موفقیت‌آمیز برای آلدهیدهای هتروآروماتیک حساس به اسید قابل استفاده است و محصولات مربوطه با بازده عالی، در زمان واکنش کوتاه و با درجه خلوص بالا سنتز شدند. این روش جدید دارای مزایای قابل توجهی از قبیل سادگی عملیاتی، بازده عالی، زمان واکنش کوتاه و عدم وجود دستورالعمل‌های خالص‌سازی اولیه یا خسته‌کننده است. علاوه بر این، عملکرد عالی در محیط آب و شرایط ملایم، ثبات حرارتی و جداسازی ساده کاتالیزور آن را به یک سیستم ناهمگن خوب و یک جایگزین مناسب برای دیگر کاتالیزورهای ناهمگن مبدل می‌سازد. همچنین، این کاتالیزور می‌تواند به راحتی از طریق صاف کردن یا سانتریفوژ بازیافت شود و برای شش دوره متوالی بدون کاهش چشمگیر در فعالیت استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Green Three-component One-pot Synthesis of Benzo[b]pyran and Pyrano[c]chromene Derivatives Using Nanosilica-supported Dendritic Polymer Encapsulated Phosphotungstic acid (Dendrimer-PWAn) Nanoparticles in Aqueous Media under Ultrasound Irradiation

نویسندگان [English]

  • Abolfath Parhami 1
  • Mohsen Esmaeilpoor 2
  • Mosadegh Keshavarz 3
  • Nasir Iravani 4
1 Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Islamic Republic of Iran
2 Chemistry Department, College of Science, Shiraz University, Shiraz, I. R. of Iran
3 Department of Gas and Petroleum, Yasouj University, Gachsaran, Iran
4 Department of Chemistry, Faculty of Science, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran
چکیده [English]

An efficient and green approach was developed for the synthesis of various derivatives of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]chromene in the presence of Dendrimer-PWAn as nanocatalyst at ambient temperature through a one-pot three-component reaction between aromatic aldehydes, malononitrile, and dimedone or 4-hydroxycoumarin in an aqueous media under ultrasound irradiation. In order to prepare this catalyst, H3PW12O40 (PWAn) nanoparticles provided by a solvo-thermal method were encapsulated into dendritic polymer-supported on nanosilica. The catalyst is mesoporous and has a particle size of 40 nm. The mean pore diameter, BET surface area and pore volume are 6.1 nm, 479 m2/g and 0.6 cm3, respectively. The amounts of PWAn immobilized on the nanocatalyst was found to be 39.7 wt% (0.14 mmol/g). The developed method is not only suitable for aromatic aldehydes but also successfully used for acid sensitive heteroaromatic aldehydes, and the corresponding products were synthesized with high purity in high yield, and short reaction times. This new method has significant advantages such as operational simplicity, high efficiency, short reaction time and lack of elaborate workup or tedious purification procedures. In addition, excellent yields in a mild environment, thermal stability, and simple catalyst separation make it a suitable alternative to other heterogeneous catalysts. Also, this catalyst can be easily recycled through simple filtration or centrifugation and used for six consecutive periods without significant reduction in activity.

کلیدواژه‌ها [English]

  • Dendrimer-PWAn nanocatalyst
  • Multi-component reactions (MCRs)
  • Ultrasound irradiation
  • tetrahydrobenzo[b]pyran
  • 3
  • 4-dihydropyrano[c]chromene
[1] A. R. Katritzky, P. Czerney, J. R. Levell, and W. Du, European journal of organic chemistry. 1998 (1998) 2623.
[2] C. Wiener, C. H. Schroeder, B. D. West, and K. Paul Link, The Journal of Organic Chemistry. 27 (1962) 3086.
[3] (a) W. Kemnitzer, J. Drewe, S. Jiang, H. Zhang, Y. Wang, J. Zhao, and S. Jia, Journal of medicinal chemistry. 47 (2004) 6299. ; (b)   M. A. Al-Haiza, M. S. Mostafa, and M. Y. El-Kady, Molecules. 8 (2003) 275.
[4] K Shibata, S. Takegawa, N. Koizumi, N. Yamakoshi, and E. Shimazawa, Chemical and pharmaceutical bulletin. 40 (1992) 935.
[5] H. F. Niya, N .Hazeri, M. R. Kahkhaie and M. T. Maghsoodlou, Research on Chemical Intermediates. 46 (2020) 1685.
[6] H. Hu, F. Qiu, A. Ying, J. Yang and H. Meng, International Journal of Molecular Sciences. 15 (2014) 6897.
[7] F. Adibian, A. R. Pourali, B. Maleki, M. Baghayeri and A. Amiri, Polyhedron. 175 (2019) 114179.
[8] E. Mollashahi and M. Nikraftar, Journal of Saudi Chemical Society. 22 (2018) 42.
[9] B. Maleki, Organic Preparations and Procedeures International. 48 (2016) 3.
[10] A. Maleki, F. Hassanzadeh-Afruzi, S. Bahrami, Applied Chemistry. 15 (2020) 173.
[11] T. Shamsi, A. Amoozadeh, E. Tabrizian, Applied Chemistry. 12 (2017) 241.
[12] M. Norouzi and D.Elhamifar, Catalysis Letters. 149 (2019) 619.
[13] M. A. Shaikh, M. arooqui and S.Abed, Research on Chemical Intermediates. 45 (2019) 1595.
[14] M. Gholamhosseini-Nazari, S. Esmati, K. D. Safa, A. Khataee and R. Teimuri-Mofrad, Research on Chemical Intermediates. 45 (2019) 1841.
[15] D. Elhamifar, Z. Ramazani, M. Norouzi and R. Mirbagheri, Journal of Colloid and Interface Science. 511 (2018) 392.
[16] J. Yang, S. Liu, H. Hu, S. Ren and A.Ying, Chinese Journal of Chemical Enginering. 23 (2015) 1416.
[17] J. Davarpanah, A. R. Kiasat, S. Noorizadeh and M. Ghahremani, Journal of Molecular Catalysis A-Chemical. 376 (2013) 78.
[18] F. Ataie, A. Davoodnia and A. Khojastehnezhad, Polycyclic Aromatic Compounds. (2019) 1.
[19] B. Maleki, and S. Sedigh Ashrafi, RSC Advances. 4 (2014) 42873.
[20] Y. Peng, and G. Song, Catalysis Communications. 8 (2007) 111.
[21] N. Isambert, M. M. S. Duque, J.-C. Plaquevent, Y. Genisson, J. Rodriguez, and T. Constantieux, Chemical Society Reviews. 40 (2011) 1347.
[22] (a) D. Strübing, H. Neumann, S. Klaus, S. Hübner, and M. Beller, Tetrahedron. 61 (2005) 11333.; (b)  A. Davoodnia, M. M. Heravi, L. Rezaei-Daghigh, and N. Tavakoli-Hoseini, Monatshefte für Chemie-Chemical Monthly. 140 (2009) 1499.; (c)  L. Yu, B. Chen, and X. Huang, Tetrahedron Letters. 48 (2007) 925.; (d)  A. Davoodnia, M. Bakavoli, R. Moloudi, N. Tavakoli-Hoseini, and M. Khashi, Monatshefte für Chemie-Chemical Monthly. 141 (2010) 867.
[23] (a) B. M.  Trost, Science. (1991) 1471.; (b)  R. A.  Sheldon, Pure Appl. Chem. 72 (2000) 1233.
[24] A. F. Mahmoud, A. El-Latif, F. Fathy, and A. M. Ahmed, Chinese Journal of Chemistry. 28 (2010) 91.
[25] (a) N. M.  Abd El-Rahman, T. S. Saleh, and M. F. Mady, Ultrasonics sonochemistry. 16 (2009) 70.; (b)  H. Zang, Q. Su, Y. Mo, B.-W. Cheng, and S. Jun, Ultrasonics sonochemistry. 17 (2010) 749.; (c) D. Venzke, A. FC Flores, F. H. Quina, L. Pizzuti, and C. M. P. Pereira, Ultrasonics sonochemistry. 18 (2011) 370.; (d)  M. Shekouhy, and A. Hasaninejad, Ultrasonics sonochemistry. 19 (2012) 307.
[26] (a) P. Juliano, Amir E. Torkamani, T. Leong, V. Kolb, P. Watkins, S. Ajlouni, and T. Kumar Singh, Ultrasonics sonochemistry. 21 (2014) 2165.; (b)  M. Salavati-Niasari, J. Javidi, F. Davar, and A. Amini Fazl, Journal of Alloys and Compounds. 503 (2010) 500.; (c)  M. Salavati-Niasari, and J. Javidi, Journal of Cluster Science. 23 (2012) 1019.
[27] A. Khalafi-Nezhad, M. Divar, and F. Panahi, RSC Advances. 5 (2015) 2223.
[28] B. Karami, V. Ghashghaee, and S. Khodabakhshi, Catalysis Communications. 20 (2012) 71.
[29] V. Brahmkhatri, and A. Patel, Industrial & Engineering Chemistry Research. 50 (2011) 13693.
[30] M. Esmaeilpour, J. Javidi, F. Dehghani, and F. Nowroozi Dodeji, New Journal of Chemistry. 38 (2014) 5453.
[31] M. Esmaeilpour, J. Javidi, and M. Zandi, Materials Research Bulletin. 55 (2014) 78.
[32] A. Khalafi-Nezhad, F. Panahi, R. Yousefi, S. Sarrafi, and Y. Gholamalipour, Journal of the Iranian Chemical Society. 11 (2014) 1311.
[33] M. Esmaeilpour, J. Javidi, and M. Zandi, New Journal of Chemistry. 39 (2015) 3388.
[34] J. Javidi, M. Esmaeilpour, Z. Rahiminezhad, and F. Nowroozi Dodeji, Journal of Cluster Science. 25 (2014) 1511.
[35] J. Javidi, M. Esmaeilpour, and F. Nowroozi Dodeji, RSC Advances. 5 (2015) 308.
[36] M. Salavati-Niasari, J. Javidi, and M. Dadkhah, Combinatorial chemistry & high throughput screening. 16 (2013) 458.
[37] C. B. Gorman, and J. C. Smith, Accounts of chemical research. 34 (2001) 60.
[38] R. van Heerbeek, P. C. J. Kamer, P. W. N. M. van Leeuwen, and J. N. H. Reek, Chemical reviews. 102 (2002) 3717.
[39] A. E.  Kaifer, European Journal of Inorganic Chemistry. 2007 (2007) 5015.
[40] A. J. L. Villaraza, A. Bumb, and M. W. Brechbiel, Chemical reviews. 110 (2010) 2921.
[41] V. Chechik, and R. M. Crooks, Journal of the American Chemical Society. 122 (2000) 1243.
[42] M. Esmaeilpour, J. Javidi, F. Nowroozi Dodeji, and H. Hassannezhad, Journal of the Iranian Chemical Society. 11 (2014) 1703.
[43] M. Esmaeilpour, J. Javidi, and F. Dehghani, Journal of the Iranian Chemical Society. 13 (2016) 695.
[44] M. Esmaeilpour, J. Javidi, F. Dehghani, and S. Zahmatkesh, Research on Chemical Intermediates. 43 (2017) 163.