تثبیت آنزیم لیپاز بر روی سدیم مونتموریلونیت و مونتموریلونیت اصلاح شده: بررسی فعالیت بیوکاتالیستی لیپازهای تثبیت شده در تولید بیودیزل از پسماند روغن خوراکی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

گروه شیمی، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد شهرضا، شهرضا، اصفهان، ایران

چکیده

در این مقاله، تثبیت آنزیم لیپاز کاندیدا روگوزا بر روی بستر سدیم مونتموریلونیت (MT) آب دوست و مونتموریلونیت اصلاح شده‌ی (MTS) آب گریز بررسی شده است. MTS آب گریز، با تغییر ماهیت MT آب دوست با سورفکتانت ستریمونیوم برمید تهیه شد. فعالیت آنزیمی لیپاز تثبیت شده بر روی سدیم مونتموریلونیت (LMT) و لیپاز تثبیت شده بر روی مونتموریلونیت اصلاح شده (LMTS)، در تولید بیودیزل از پسماند روغن خوراکی آزمایش شد. فرایند اصلاح بستر و تثبیت آنزیم توسط تکنیک‌های BET، XRD و SEM بررسی شد. اثرات دما، زمان، مقدار آب و نسبت مولی متانول به روغن بر روی راندمان بیودیزل نیز بررسی شد. نتایج نشان داد که LMTS، عملکرد بسیار بهتری نسبت به LMT دارد. در شرایط بهینه، راندمان بیودیزل تولیدی به وسیله‌ی LMTS حدود 86/4% بود. LMTS پایداری انبارداری خوبی را از خود نشان داد و راندمان بیودیزل تولیدی پس از 30 روز انبارداری در ℃ 4، حدود 64/2% بود، در حالی‌که راندمان بیودیزل تولیدی توسط لیپاز آزاد (FL)، حدود 57/1% بود. علاوه بر این، LMTS در مقایسه با LMT، قابلیت استفاده‌ی مجدد خوبی داشت و پس از ده بار استفاده از آن، راندمان بیودیزل تولید شده حدود 51/6% بود.

کلیدواژه‌ها


عنوان مقاله [English]

Immobilization of lipase on Na-montmorillonite and modified montmorillonite: Investigation of biocatalytic activity of immobilized lipases in biodiesel production from waste cooking oil

نویسندگان [English]

  • Elnaz Kazemi
  • Hamidreza Aghaei
Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
چکیده [English]

In this paper, the immobilization of lipase from Candida rugosa on hydrophilic Na-montmorillonite (MT) and hydrophobic modified montmorillonite (MTS) is investigated. Hydrophobic MTS was prepared by changing the nature of hydrophilic MT with cetrimonium bromide surfactant. The enzymatic activity of lipase immobilized on Na-montmorillonite (LMT) and lipase immobilized on modified montmorillonite (LMTS) was investigated in the production of biodiesel from waste cooking oil. The support modification and enzyme immobilization were evaluated by BET, XRD, and SEM techniques. The effects of temperature, time, water content, and the molar ratio of methanol to oil on biodiesel yield were also investigated. The results showed that the activity of LMTS was much better than LMT. Under optimal conditions, the biodiesel yield produced by LMTS was about 86.4%. LMTS showed good storage stability, and after 30 days of storage at 4 ℃, the biodiesel yield was about 64.2%, while the biodiesel yield of free lipase (FL) was about 57.1%. In addition, LMTS had good reusability compared to LMT, and the biodiesel yield after 10 cycles was about 51.6%.

کلیدواژه‌ها [English]

  • Enzyme immobilization
  • Modified montmorillonite
  • Lipase
  • Biodiesel
[1] G. Brahmachari, Lipase-Catalyzed Organic Transformations: A Recent Update, in: G. Brahmachari (Ed.) Biotechnology of Microbial Enzymes, Academic Press, 2017, 325.
[2] P. Vaishnav and A.L. Demain, Industrial Biotechnology, in: T.M. Schmidt (Ed.) Encyclopedia of Microbiology (Fourth Edition), Academic Press, Oxford, 2019, 665.
[3] C. Escamilla-Alvarado, J.A. Pérez-Pimienta, T. Ponce-Noyola and H.M. Poggi-Varaldo, J. Chem. Technol. Biotechnol. 92 (2017) 906.
[4] V. Sóti, S. Lenaerts and I. Cornet, J. Biotechnol. 270 (2018) 70.
[5] R.A. Sheldon and S. van Pelt, Chem. Soc. Rev. 42 (2013) 6223.
[6] J. Liu, R.-T. Ma and Y.-P. Shi, Anal. Chim. Acta 1101 (2020) 9.
[7] T. Jesionowski, J. Zdarta and B. Krajewska, Adsorption 20 (2014) 801.
[8] D.-M. Liu and C. Dong, Process Biochem. 92 (2020) 464.
[9] S. Mortazavi and H. Aghaei, Int. J. Biol. Macromol. 164 (2020) 1.
[10] G. Fernandez-Lorente, J. Rocha-Martín and J.M. Guisan, Immobilization of Lipases by Adsorption on Hydrophobic Supports: Modulation of Enzyme Properties in Biotransformations in Anhydrous Media, in: J.M. Guisan, J.M. Bolivar, F. López-Gallego, J. Rocha-Martín (Eds.) Immobilization of Enzymes and Cells: Methods and Protocols, Springer US, New York, NY, 2020, pp. 143.
[11] R.A. Wahab, N. Elias, F. Abdullah and S.K. Ghoshal, React. Funct. Polym. 152 (2020) 104613.
[12] H. Aghaei, M. Ghavi, G. Hashemkhani and M. Keshavarz, Int. J. Biol. Macromol. 162 (2020) 74.
[13] B.R. Prado and J.R. Bartoli, Appl. Clay Sci. 160 (2018) 132.
[14] S. Khostavan, M. Fazli, A. Omrani, M. Ghorbanzadeh Ahangari and Y. Rostamian, Appl. Chem. 14 (2019) 35.
[15] C. Zhou, D. Tong and W. Yu, 7 - Smectite Nanomaterials: Preparation, Properties, and Functional Applications, in: A. Wang, W. Wang (Eds.) Nanomaterials from Clay Minerals, Elsevier, 2019, pp. 335.
[16] S. Elhami and N. Mohmedi, Appl. Chem. 11 (2016) 59.
[17] M.E. Sedaghat, M. Ghiaci, H. Aghaei and S. Soleimanian-Zad, Appl. Clay Sci. 46 (2009) 131.
[18] M. Ghiaci, H. Aghaei, S. Soleimanian and M.E. Sedaghat, Appl. Clay Sci. 43 (2009) 308.
[19] A. Ghaffari Nazifi and M. Behzad, Appl. Chem. 14 (2019) 155.
[20] N.H. Razak, H. Hashim, N.A. Yunus and J.J. Klemeš, J. Cleaner Prod. 316 (2021) 128090.
[21] S. Belyani, M. Behzad and F. Tamaddon, Appl. Chem. 8 (2013) 15.
[22] N. Azyzi and M. Lashkaryzadeh, Appl. Chem. 6 (2011) 53.
[23] D. Singh-Ackbarali, R. Maharaj, N. Mohamed and V. Ramjattan-Harry, Environ. Sci. Pollut. Res. 24 (2017) 12220.
[24] M. Mohadesi, B. Aghel, M. Maleki and A. Ansari, Fuel 263 (2020) 116659.
[25] T.M.I. Mahlia, Z.A.H.S. Syazmi, M. Mofijur, A.E.P. Abas, M.R. Bilad, H.C. Ong and A.S. Silitonga, Renewable Sustainable Energy Rev. 118 (2020) 109526.
[26] J. Guo, S. Sun and J. Liu, Fuel 267 (2020) 117323.
[27] H. Gong, L. Gao, K. Nie, M. Wang and T. Tan, Renewable Energy 154 (2020) 270.
[28] H. Zhang, T. Liu, Y. Zhu, L. Hong, T. Li, X. Wang and Y. Fu, Renewable Energy 145 (2020) 1246.
[29] Z. Habibi, M. Yousefi, H.R. Aghaie, P. Salehi, S. Masoudi and A. Rustaiyan, J. Essent. Oil Res. 20 (2008) 1.
[30] Z. Habibi, H.R. Aghaie, R. Ghahremanzadeh, S. Masoudi and A. Rustaiyan, J. Essent. Oil Res. 18 (2006) 503.
[31] D.N. Thoai, S. Photaworn, A. Kumar, K. Prasertsit and C. Tongurai, Energy Procedia 138 (2017) 536.
[32] M. Mehrali-Afjani, A. Nezamzadeh-Ejhieh and H. Aghaei, Chem. Phys. Lett. 759 (2020) 137873.
[33] L. Khazdooz, A. Zarei, T. Ahmadi, H. Aghaei, N. Nazempour, L. Golestanifar and N. Sheikhan, React. Kinet. Mech. Catal. 122 (2017) 229.
[34] N. Pourshirband and A. Nezamzadeh-Ejhieh, J. Mol. Liq. 335 (2021) 116543.
[35] A. Zarei, A.R. Hajipour, L. Khazdooz and H. Aghaei, Synlett 2010 (2010) 1201.
[36] M. Ghiaci, R.N. Esfahani and H. Aghaei, Catal. Commun. 10 (2009) 777.
[37] H. Aghaei and M. Ghiaci, React. Kinet. Mech. Catal. 131 (2020) 233.
[38] M. Ghiaci, R.J. Kalbasi, M. Mollahasani and H. Aghaei, Appl. Catal. A 320 (2007) 35.
[39] M. Ghiaci, H. Aghaei, S. Soleimanian and M.E. Sedaghat, Appl. Clay Sci. 43 (2009) 289.
[40] A. Zarei, L. Khazdooz, H. Aghaei, M.M. Gheisari, S. Alizadeh and L. Golestanifar, Tetrahedron 73 (2017) 6954.
[41] N. Raeisi-Kheirabadi, A. Nezamzadeh-Ejhieh and H. Aghaei, Microchem. J. 162 (2021) 105869.
[42] N. Raeisi-Kheirabadi, A. Nezamzadeh-Ejhieh and H. Aghaei, Iran. J. Catal. 11 (2021) 181.
[43] M. Ghiaci, M.E. Sedaghat, H. Aghaei and A. Gil, J. Chem. Technol. Biotechnol. 84 (2009) 1908.
[44] H. Yan and Z. Zhang, Colloids Surf. A 611 (2021) 125824.
[45] H. Aghaei, A. Yasinian and A. Taghizadeh, Int. J. Biol. Macromol. 178 (2021) 569.
[46] M. Khozeymeh Nezhad and H. Aghaei, Renewable Energy 164 (2021) 876.
[47] M. Ghiaci, R.J. Kalbasi and H. Aghaei, Catal. Commun. 8 (2007) 1843.
[48] A. Zarei, L. Khazdooz, A.R. Hajipour and H. Aghaei, Dyes Pigm. 91 (2011) 44.
[49] X. Cao, H. Xu, F. Li, Y. Zou, Y. Ran, X. Ma, Y. Cao, Q. Xu, D. Qiao and Y. Cao, Renewable Energy 171 (2021) 11.
[50] C. Miao, H. Li, X. Zhuang, Z. Wang, L. Yang, P. Lv and W. Luo, RSC Adv. 9 (2019) 29665.
[51] H. Suo, L. Xu, C. Xu, X. Qiu, H. Huang and Y. Hu, J. Colloid Interface Sci. 553 (2019) 494.
[52] D.-T. Tran, J.-S. Chang and D.-J. Lee, Appl. Energy 185 (2017) 376.
[53] A.P.S. Bonakdar, A. Sadeghi, H.R. Aghaei, K. Beheshtimaal, S.M.R. Nazifi and A.R. Massah, Russ. J. Bioorg. Chem. 46 (2020) 371.
[54] E. Séverac, O. Galy, F. Turon, C.A. Pantel, J.-S. Condoret, P. Monsan and A. Marty, Enzyme Microb. Technol. 48 (2011) 61.
[55] M. Lotti, J. Pleiss, F. Valero and P. Ferrer, Biotechnol. J. 10 (2015) 22.
[56] J.M. Encinar, A. Pardal, N. Sánchez and S. Nogales, Energies 11 (2018).
[57] J. Patchimpet, B.K. Simpson, K. Sangkharak and S. Klomklao, Renewable Energy 153 (2020) 861.
[58] Y.J. Jo, O.K. Lee and E.Y. Lee, Bioresour. Technol. 158 (2014) 105.
[59] G.E.A. Awad, A.F. Ghanem, W.A. Abdel Wahab and M.I. Wahba, Int. J. Biol. Macromol. 148 (2020) 1140.
[60] B.P. Dwivedee, S. Soni, R. Bhimpuria, J.K. Laha and U.C. Banerjee, Int. J. Biol. Macromol. 133 (2019) 1299.
[61] L. Khazdooz, A. Zarei, T. Ahmadi, H. Aghaei, L. Golestanifar and N. Sheikhan, Res. Chem. Intermed. 44 (2018) 93.
[62] J. Amoah, S.-H. Ho, S. Hama, A. Yoshida, A. Nakanishi, T. Hasunuma, C. Ogino and A. Kondo, Biochem. Eng. J. 105 (2016) 10.