بررسی نقش کاتالیزوری ترکیبات استیل استونات فلزی در واکنش دی اکسید کربن و استایرن اکسید برای تولید استایرن کربنات

نوع مقاله : مقاله علمی پژوهشی

نویسنده

بابل، دانشگاه صنعتی نوشیروانی بابل، دانشکده علوم، گروه شیمی

چکیده

استفاده از دی اکسید کربن که گاز گلخانه‌ای شناخته می شود در سنتز های شیمیایی به عنوان ماده‌ی اولیه کربنی غیر سمی و ارزان برای تولید ترکیبات مفید در سالهای اخیر بسیار مورد توجه بوده است. پایداری ترمودینامیکی بالای این مولکول باعث ایجاد محدودیت در استفاده از آن در واکنش های شیمیایی می شود. یک استراتژی برای واکنش پذیر کردن مولکول پایدار دی اکسید کربن واکنش آن با مولکولهای واکنش پذیر اپوکسید است که منجر به تولید کربنات حلقوی و پلی کربنات می‌گردد. در حال حاضر کاتالیزورهای مورد استفاده در این واکنش ها گران قیمت هستند و یا روش های سنتز چندین مرحله ای دارند. استفاده از کاتالیزورهای ارزان و دردسترس باعث توسعه ی کاربرد دی اکسید کربن به عنوان ماده اولیه در سنتزهای شیمیایی خواهد شد
. در این پژوهش کمپلکس‌های استیل استونات فلزی Fe(III)(acac-F3) ، Fe(III)(acac)3 ، Ni(II)(acac)2 ، Ni(II)(acac-F6)2، Co(II)(acac)2 ،Co(II)(acac-F6)2 به عنوان کاتالیزور در واکنش دی اکسید کربن و استایرن اکسید در حضور باز الی هالوژندار مورد استفاده قرار گرفته اند. این کاتالیزورها به صورت تجاری در دسترس و ارزان قیمت هستند. تست های کاتالیزوری بازده 61 درصد تولید استایرن کربنات را در دمای Cº80 و فشار دی اکسید کربن 1 اتمسفر در زمان 3 ساعت نشان داد. با افزایش فشار دی اکسید کربن به 80 درجه بازده به 88 درصد افزایش یافت که در مورد کاتالیزور‌های با استخلاف فلوئور این تفاوت چشمگیرتر بوده و بازده تا 92 درصد افزایش نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of metal acetylacetonates as catalyst in the reaction of CO2 and styrene oxide to produce styrene carbonate

نویسنده [English]

  • Masoumeh Taherimehr
Babol, Noshirvani Babol University of Technology, Faculty of Science, Department of Chemistry
چکیده [English]

Employing carbon dioxide as a renewable C1 building block in chemical reactions is attracting attentions in recent years. Reacting CO2 with high energy reagents such as H2 and epoxides in the presence of suitable catalysts is a strategy to overcome the thermodynamic stability of CO2. Reaction of CO2 and epoxides produces polymeric carbonates and cyclic carbonates with several practical and potential applications such as reagents in polyurethane synthesis, biodegradable polymers, and as green solvents in various reactions. In this research, metal acetylacetonate complexes of Fe(III)(acac-F3), Fe(III)(acac)3 , Ni(II)(acac)2, Ni(II)(acac-F6)2, and Co(II)(acac)2, Co(II)(acac-F6)2 are investigated as easily available catalysts in the reaction of styrene oxide and CO2 in the presence of organic halides. The effect of CO2 pressure, catalyst and co-catalyst structure is investigated. A high yield as 61% was observed at 80 ºC and 1 bar of CO2 after 3h. Increasing the CO2 pressure up to 80 bar had a significant effect on the carbonate conversion as 88% yield was obtained. With fluorinated complexes increasing the yield was even more and up to 92% yield was observed.

کلیدواژه‌ها [English]

  • Carbon dioxide
  • Epoxide
  • Metal Acetylacetonates
  • Styrene carbonate
[1] S. Klemme and J. C. van Miltenburg, J. Appl. Chem. 68 (2004) 515.
[2] A. Jalali, M. Vaezi, N. Naderi, F. Tajabadi, and A. Eftekhari, J. Appl. Chem. 55 (2020) 343.
[3] D. Brock, A. Koder, H.-P. Rabl, D. Touraud, and W. Kunz, Green Chem. 20 (2018) 3308.
[4] J. Zhang, Q. Qian, M. Cui, C. Chen, S. Liu, and B. Han, Green Chem. 19 (2017) 4396.
[5] M. Reza, A. Amiri, F. Fadaei, and K. Schenk-, J. Appl. Chem. 14 (2020) 135.
[6] Q. Liu, L. Wu, R. Jackstell, and M. Beller, Nat. Commun. 6 (2015) 5933.
[7] M. Taherimehr, J. P. C. C. Sertã, A. W. Kleij, C. J. Whiteoak, and P. P. Pescarmona, ChemSusChem 8 (2015) 1034.
[8] C. Martín, G. Fiorani, and A. W. Kleij, ACS Catal. 5 (2015) 1353.
[9] A. J. Kamphuis, F. Picchioni, and P. P. Pescarmona, Green Chem. 21 (2019) 406.
[10] M. S. Shaharun, M. A. Alotaibi, and A. I. Alharthi, J. CO2 Util. 34 (2019) 20.
[11] M. Nikje and H. Zarghami, J. Appl. Chem. 55 (2020) 221.
[12] P. P. Pescarmona and M. Taherimehr, Catal. Sci. Technol. 2 (2012) 2169.
[13] M. Taherimehr and P. P. Pescarmona, J. Appl. Polym. Sci. 131 (2014).
[14] M. Taherimehr, S. M. Al-Amsyar, C. J. Whiteoak, A. W. Kleij, and P. P. Pescarmona, Green Chem 15 (2013) 3083.
[15] M. Taherimehr, A. Decortes, S. M. Al-Amsyar, W. Lueangchaichaweng, C. J. Whiteoak, E. C. Escudero-Adán, A. W. Kleij, and P. P. Pescarmona, Catal. Sci. Technol. 2 (2012) 2231.
[16] M. Taherimehr, J. Paulo, C. Costa, A. W. Kleij, C. J. Whiteoak, and P. P. Pescarmona, Green Chem 15 (2015) 3083.
[17] S. H. Kim, D. Ahn, M. J. Go, M. H. Park, M. Kim, J. Lee, and Y. Kim, Organometallics 33 (2014) 2770.
[18] P. Li and Z. Cao, Organometallics 37 (2018) 406.
[19] J. Chen, Y. Xu, Z. Gan, X. Peng, and X. Yi, Eur. J. Inorg. Chem. 13 (2019) 1733.
[20] Y. Chen, R. Luo, Q. Xu, W. Zhang, X. Zhou, and H. Ji, ChemCatChem 9 (2017) 767.
[21] Y. Chen, R. Luo, Q. Xu, J. Jiang, X. Zhou, and H. Ji, ChemSusChem 10 (2017) 2534.
[22] K. Nakano, K. Kobayashi, T. Ohkawara, H. Imoto, and K. Nozaki, J. Am. Chem. Soc. 135 (2013) 8456.
[23] S. Wang, X. Yang, Q. Bai, and T. Li, Int. J. Polym. Anal. Charact. 18 (2013) 163.
[24] A. C. B. Burtoloso, Synlett 2005 (2005) 2859.
[25] S. Kumar, S. Jain, and B. Sain, Catal. Letters 142 (2012) 615.
[26] D. J. Darensbourg and A. D. Yeung, Polym. Chem. 5 (2014) 3949.
[27] M. Taherimehr, J. P. C. C. Sertã, A. W. Kleij, C. J. Whiteoak, and P. P. Pescarmona, ChemSusChem 8 (2015) 1034.
[28] P. G. Jessop, M. M. Olmstead, C. D. Ablan, M. Grabenauer, D. Sheppard, C. A. Eckert, and C. L. Liotta, Inorg. Chem. 41 (2002) 3463.
[29] X.-B. Lu, L. Shi, Y.-M. Wang, R. Zhang, Y.-J. Zhang, X.-J. Peng, Z.-C. Zhang, and B. Li, J. Am. Chem. Soc. 128 (2006) 1664.
[30] M. R. Kember, A. J. P. White, and C. K. Williams, Macromolecules 43 (2010) 2291.
[31] K. Nakano, T. Kamada, and K. Nozaki, Angew. Chemie Int. Ed. 45 (2006) 7274.