استخراج و شناسایی گالیک اسید و برخی از مواد موثره موجود درگیاه اسطوخودوس و سنتز نانو ذرات نقره به روش سبز از عصاره این گیاه

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

دانشکده علوم پایه، گروه شیمی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

چکیده

در این کار پژوهشی سرشاخه‌های گل‌دار گیاه اسطوخودوس شامی از کوه‌های استان ایلام و سرشاخه‌های گل‌دار گیاه اسطوخودوس لارستانی ، ازاستان بوشهر جمع آوری، در سایه خشک و آسیاب شدند. عصاره ی متانولی و آبی-متانولی آنها توسط روشهای خیساندن، سوکسیله و التراسونیک استخراج و برخی از ترکیبات مهم توسط روش GC-MS مورد شناسائی قرارگرفتند. با توجه به تنوع زیاد ترکیبات استخراجی از عصاره گیاه اسطوخودوس، جهت جداسازی ترکیب مهم گالیک اسید از عصاره آبی - متانولی، از روشهای کروماتوگرافی ستونی، کروماتوگرافی صفحه ای، کروماتوگرافی لایه نازک و عمل تبلور استفاده گردید. ترکیب مذکور در نهایت به صورت پودر سفید رنگ خالص سازی و توسط روشهای طیف سنجی شناسائی و برای تعیین مقدار درصد گالیک اسید از دستگاه کروماتوگرافی مایع با کارایی بالا(HPLC) استفاده شد. در ادامه نانو ذرات نقره به روش سبز از عصاره اسطوخودوس تهیه و در محلول نیترات نقره با استفاده از طیف نگاری UV-vis در دامنه طول موج 200 تا 800 نانومتر مورد بررسی قرارگرفت همچنین با استفاده از میکروسکوپ روبشی نشر میدانی (FESEM) مورفولوژی ذرات، با استفاده از (XRD) الگوی پراش ذرات و با استفاده از FT-IR گروههای عاملی مسئول کاهش و پایدارسازی نانو ذرات نقره مورد ارزیابی قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Extraction and identification of Gallic acid and some active ingredients in Lavandula angustifolia plant and synthesis of silver nanoparticles by green method from the extract of this plant

نویسندگان [English]

  • Abdolreza Abri
  • Monireh Noroozi
Faculty of Basic Sciences, Department of Chemistry, Shahid Madani University of Azerbaijan, Tabriz, Iran
چکیده [English]

In this research, the flowering branches of shami Lavandula angustifolia plant, from the mountains of Ilam province and the flowering branches of Larestani Lavandula angustifolia plant from Bushehr province were collected, dried and ground in the shade. Their methanolic and aqueous-methanolic extractive were extracted by maceration, soxhlet and ultrasonic methods and some important compounds were identified by the GC-MS method. Due to the large variety of extractives from Lavandula angustifolia extract, column chromatography, plate chromatography, thin layer chromatography and crystallization were used to separate the important combination of gallic acid from methanolic extract. The compound was finally purified as a white powder and identified by spectroscopic methods, and a high-performance liquid chromatography (HPLC) device was used to determine the percentage of Gallic acid. The silver nanoparticles were then prepared by green method from Lavandula angustifolia extract and examined in silver nitrate solution using UV-vis spectroscopy in the wavelength range of 200 to 800 nm. Also, Field Emission Scanning Electron Microscope (FE-SEM) for particle morphology, XRD for the particle scattering pattern and with FT-IR device, the functional groups responsible for reducing and stabilizing silver nanoparticles were evaluated.

کلیدواژه‌ها [English]

  • Lavandula angustifolia
  • Extraction
  • silver nanoparticles
  • ultrasonic
[1] T. Aburjai, M. Hudiab and V. Cavrini, J. Essent. Oil Res. 17 (2005) 49.
[2] J. D. Phillipson, Phytochemistry 56 (2001) 237.
[3] J. D. Phillipson, Phytother. Res. 13 (1999) 2.
[4] A. Chrysargyris, C. Panayiotou and N. Tzortzakis, Ind. Crops Prod. 83 (2016) 577.
[5] V. D. Zheljazkov,C. L. Cantrell, T. Astatkie and E. Jeliazkova, J. Oleo Sci. 62 (2013) 195.
[6] C. Da Porto, D. Decorti and I. Kikic, Food Chem. 112 (2009) 1072.
[7] L. T. Danh, N. D. A. Triet,  J. Zhao, R. Mammucari and N. Foster, Food Chem. 6 (2013) 3481.
[8] Y. Cong, P. Abulizi, L. Zhi and X. Wang, Chem. Nat. Compd. 44 (2008) 810.
[9] V. Hajhashemi, A. Ghannadi and B. Sharif, J. Ethnopharmacol 89 (2003) 67.
[10] A. R. Fakhari, P. Salehi, R. Heydari, S. N. Ebrahimi and P. R. Haddad, J. Chromatogr. A 1098 (2005) 14.
[11] A. L. Mantovani, G. P. Vieira, W. R. Cunha, M. Groppo, R. A. Santos, V. Rodrigues, L. G. Magalhães and A. E. Crotti, Rev. Bras. Farmacogn 23 (2013) 877.
[12] R. S. Verma, L. U. Rahman, C. S.  Chanotiya, R. K. Verma, A. Chauhan A. Yadav, A. Singh  and A. K. Yadav, J. Serb. Chem. Soc. 75 (2010) 343.
[13] M. Evandri, L. Battinelli C. Daniele, S. Mastrangelo, P. Bolle and G. Mazzanti, Food. Chem. Toxico. 43 (2005) 1381.
[14] R. P. Metuku, S. Pabba, S. Burra, K. Gudikandula and M. S. Charya, Biotech. 4 (2014) 227.
[15] R. Nurzyńska-Wierdak and G. Zawiślak, Acta Sci Pol Hortorum Cultus 15 (2016) 225.
[16] M.Farzaneh, H. Kiani, R. Sharifi, M. Reisi and J. Hadian, Postharvest Biol. Technol. 109 (2015) 145.
[17] M. Mohamadi, T. Shamspur and A. Mostafavi, J. Essent. Oil Res. 25 (2013) 55.
[18] N.Yadikar, K. Bobakulov, G. Li and h. A. Aisa, Phytochem. Lett. 23 (2018) 149.
[19] M. Zhou, H. H. Xing, H. Y. Ma, L. Zhou, Y. Yang, G. P. Li, W. Y. Hu, Q. Liu,X. M. Li, and Q. F. Hu, Phytochem. Lett. 19 (2017) 156.
[20] S. Tang, J. Shi, C. Liu, F. Zhang, N. Xiang, X. Liu, Y. Chen, J. You, Q. Shen and M. Miao,  Phytochem. Lett. 19 (2017) 60.
[21] C. Tschiggerl and F. Bucar, Nat. Prod. Commun. 5 (2010) 1431.
[22] L. Lesage-Meessen, M.  Bou, J-C. Sigoillot, CB. Faulds, and A.  Lomascolo, ‎Appl. Microbiol. Biotechnol. 99 (2015) 3375.
[23] KK. Panda, VMM. Achary,R. Krishnaveni, BK. Padhi, SN. Sarangi, SN. Sahu and BB. Panda, Toxicol In Vitro 25 (2011) 1097.
[24]M. Saravanan, AK. Vemu and SK. Barik, Colloids Surf. B 88 (2011) 325.
[25] P. Kouvaris, A. Delimitis, V. Zaspalis, D. Papadopoulos, SA. Tsipas and N. Michailidis, Mater. Lett. 76 (2012) 18.