[1] Sadeghi-Sefidmazgi, A., Moradi-Shahrbabak, M., Nejati-Javaremi, A., Miraei-Ashtiani, S. R., & Amer, P. R. (2012). Breeding objectives for Holstein dairy cattle in Iran. Journal of dairy science, 95(6), 3406-3418.
[2] Titorenko and K. A. Zhichkin, in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 723 (2021), 32003.
[3] Alibeigi, A., Malakootian, M. & Mirzahoseini, S. A. (2016). Determine the amount of lead, cadmium, copper, zinc and calcium antagonists of milk and cheese which is produced in Kerman and Sirjan pasteurized milk factory. Scientific & Research Journals Management System, 18(70), 13-23. (in Persian)
[4] Shete, B. S., & Shinkar, N. P. (2013). Dairy industry wastewater sources, characteristics & its effects on environment. International Journal of Current Engineering and Technology, 3(5), 1611-1615.
[5] Roufou, S., Griffin, S., Katsini, L., Polańska, M., Van Impe, J. F., & Valdramidis, V. P. (2021). The (potential) impact of seasonality and climate change on the physicochemical and microbial properties of dairy waste and its management. Trends in Food Science & Technology, 116, 1-10.
[6] Slavov, A. K. (2017). Dairy wastewaters–general characteristics and treatment possibilities–a review. Food Technol. Biotechnol, 55(1), 14.
[7] Kusmayadi, A., Lu, P. H., Huang, C. Y., Leong, Y. K., Yen, H. W., & Chang, J. S. (2022). Integrating anaerobic digestion and microalgae cultivation for dairy wastewater treatment and potential biochemicals production from the harvested microalgal biomass. Chemosphere, 291, 133057.
[8] De Carvalho, C. C., & Fernandes, P. (2010). Production of metabolites as bacterial responses to the marine environment. Marine drugs, 8(3), 705-727.
[9] Das, A., Kundu, P., & Adhikari, S. (2022). Biological treatment of dairy industry wastewater in a suspended growth batch reactor: performance evaluation and biodegradation kinetics. Bioremediation Journal, 26(4), 341-359.
[10] Abdullah, F. H., Bakar, N. A., & Bakar, M. A. (2022). Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. Journal of hazardous materials, 424, 127416.
[11] Dinesha, B. L., Hiregoudar, S., Nidoni, U., Ramappa, K. T., Dandekar, A., & Ravi, M. V. (2021). Comparison of chitosan based nano-adsorbents for dairy industry wastewater treatment through response surface methodology and artificial neural network models. Water Science and Technology, 83(5), 1250-1264.
[12] Sandoval, M. A., & Salazar, R. (2021). Electrochemical treatment of slaughterhouse and dairy wastewater: toward making a sustainable process. Current Opinion in Electrochemistry, 26, 100662.
[13] Hosken, B. D. O., Melo Pereira, G. V., Lima, T. T. M., Ribeiro, J. B., Magalhães Júnior, W. C. P. D., & Martin, J. G. P. (2023). Underexplored Potential of Lactic Acid Bacteria Associated with Artisanal Cheese Making in Brazil: Challenges and Opportunities. Fermentation, 9(5), 409.
[14] Kovalenko, L. Y., Burmistrov, V. A., & Zakhar’Evich, D. A. (2020). The Composition and Structure of Phases, Formed in the Thermolysis of Substitutional Solid Solutions H2Sb2-xVxO6-nH2O. Конденсированные среды и межфазные границы, 22(1 (eng)), 75-83.
[15] Resende, R. F., Leal, P. V. B., Pereira, D. H., Papini, R. M., & Magriotis, Z. M. (2020). Removal of fatty acid by natural and modified bentonites: elucidation of adsorption mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605, 125340.
[16] Sheibani, E., Hosseini, A., Sobhani Nasab, A., Adib, K., Ganjali, M. R., Pourmortazavi, S. M., & Ehrlich, H. (2021). Application of polysaccharide biopolymers as natural adsorbent in sample preparation. Critical Reviews in Food Science and Nutrition, 1-28.
[17] Kumar, N., Kumar, S., Gusain, R., Manyala, N., Eslava, S., & Ray, S. S. (2020). Polypyrrole-promoted rGO–MoS2 nanocomposites for enhanced photocatalytic conversion of CO2 and H2O to CO, CH4, and H2 products. ACS Applied Energy Materials, 3(10), 9897-9909.
[18] Chen, D., Zhu, H., Yang, S., Li, N., Xu, Q., Li, H., ... & Lu, J. (2016). Micro–nanocomposites in environmental management. Advanced Materials, 28(47), 10443-10458.
[19] Kausar, A. (2016). Review on structure, properties and appliance of essential conjugated polymers. American Journal of Polymer Science & Engineering, 4(1), 91-102.
[20] Gharahcheshmeh, M. H., & Gleason, K. K. (2020). Texture and nanostructural engineering of conjugated conducting and semiconducting polymers. Materials Today Advances, 8, 100086.
[21] Wang, Y., Wu, X., Zhang, W., Luo, C., Li, J., & Wang, Y. (2018). Fabrication of flower-like Ni0. 5Co0. 5 (OH) 2@ PANI and its enhanced microwave absorption performances. Materials Research Bulletin, 98, 59-63.
[22] Ansari, M. J., Rajendran, R. R., Mohanto, S., Agarwal, U., Panda, K., Dhotre, K., ... & Pramanik, S. (2022). Poly (N-isopropylacrylamide)-based hydrogels for biomedical applications: A review of the state-of-the-art. Gels, 8(7), 454.
[23] Luo, J., Zhong, W., Zou, Y., Xiong, C., & Yang, W. (2016). Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. Journal of Power Sources, 319, 73-81.
[24] Mondal, S., Rana, U., & Malik, S. (2017). Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. The Journal of Physical Chemistry C, 121(14), 7573-7583.
[25] Perumal, S., Atchudan, R., & Cheong, I. W. (2021). Recent studies on dispersion of graphene–polymer composites. Polymers, 13(14), 2375.
[26] Aliyev, E., Filiz, V., Khan, M. M., Lee, Y. J., Abetz, C., & Abetz, V. (2019). Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Nanomaterials, 9(8), 1180.
[27] Sun, H., & Yang, B. (2008). In situ preparation of nanoparticles/polymer composites. Science in China Series E: Technological Sciences, 51(11), 1886-1901.
[28] Lu, H., Liu, Y., Gou, J., Leng, J., & Du, S. (2010). Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite. Applied Physics Letters, 96(8), 084102.
[29] El-Sayed, M. E. (2020). Nanoadsorbents for water and wastewater remediation. Science of the Total Environment, 739, 139903.
[30] Kamboh, M. A., Ibrahim, W. A. W., Nodeh, H. R., Sanagi, M. M., & Sherazi, S. T. H. (2016). The removal of organophosphorus pesticides from water using a new amino-substituted calixarene-based magnetic sporopollenin. New Journal of Chemistry, 40(4), 3130-3138.
[31] Hong, X., Zhang, B., Murphy, E., Zou, J., & Kim, F. (2017). Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors. Journal of Power Sources, 343, 60-66.
[32] Sereshti, H., Zamiri Afsharian, E., Esmaeili Bidhendi, M., Rashidi Nodeh, H., Afzal Kamboh, M., & Yilmaz, M. (2020). Removal of phosphate and nitrate ions aqueous using strontium magnetic graphene oxide nanocomposite: Isotherms, kinetics, and thermodynamics studies. Environmental Progress & Sustainable Energy, 39(2), e13332.
[33] Pashkovskaya, A. A., Vazdar, M., Zimmermann, L., Jovanovic, O., Pohl, P., & Pohl, E. E. (2018). Mechanism of long-chain free fatty acid protonation at the membrane-water interface. Biophysical Journal, 114(9), 2142-2151.
[34] Shahabuddin, S., Sarih, N. M., Afzal Kamboh, M., Rashidi Nodeh, H., & Mohamad, S. (2016). Synthesis of polyaniline-coated graphene oxide@ SrTiO3 nanocube nanocomposites for enhanced removal of carcinogenic dyes from aqueous solution. Polymers, 8(9), 305.
[35] Soltani, S., & Sereshti, H. (2022). A green alternative QuEChERS developed based on green deep eutectic solvents coupled with gas chromatography-mass spectrometry for the analysis of pesticides in tea samples. Food Chemistry, 380, 132181.
[36] Hu, B., Huang, C., Li, X., Sheng, G., Li, H., Ren, X., & Huang, Y. (2017). Macroscopic and spectroscopic insights into the mutual interaction of graphene oxide, Cu (II), and Mg/Al layered double hydroxides. Chemical Engineering Journal, 313, 527-534.
[37] Ramezanzadeh, B., Moghadam, M. M., Shohani, N., & Mahdavian, M. (2017). Effects of crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating. Chemical Engineering Journal, 320, 363-375.
[38] Bedin, K. C., Martins, A. C., Cazetta, A. L., Pezoti, O., & Almeida, V. C. (2016). KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chemical Engineering Journal, 286, 476-484.
[39] Ding, D., Zhao, Y., Yang, S., Shi, W., Zhang, Z., Lei, Z., & Yang, Y. (2013). Adsorption of cesium from aqueous solution using agricultural residue–walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water research, 47(7), 2563-2571.
[40] Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., & Xu, Q. (2015). Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259, 53-61.
[41] Elmoubarki, R., Mahjoubi, F. Z., Tounsadi, H., Moustadraf, J., Abdennouri, M., Zouhri, A., & Barka, N. (2015). Adsorption of textile dyes on raw and decanted Moroccan clays: Kinetics, equilibrium and thermodynamics. Water resources and industry, 9, 16-29.