توسعه سنسور الکتروشیمیایی مس با استفاده از الکترود اصلاح شده با اکسید گرافن عاملدار شده با D-پنیسیل آمین

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشکده علوم و شیمی، گروه نانوفناوری، دانشگاه ارومیه، رومیه، ایران

2 دانشکده علوم و شیمی، گروه نانوفناوری، دانشگاه ارومیه، رومیه، ایران. پژوهشکده نانو فناوری، دانشگاه ارومیه، ارومیه، ایران

چکیده

در این کار پژوهشی اکسید گرافن (GO) با D- پنیسیل آمین (DPA) عاملدار شده و برای توسعه سنسور الکتروشیمیایی کاتیون مس(II) مورد استفاده قرار گرفت. برای تأیید سنتز موفق اکسید گرافن عاملدار شده با دی پنیسیل آمین (DPA-GO)، از طیف‌سنجی فروسرخ تبدیل فوریه (FTIR)، میکروسکوپ الکترونی روبشی (SEM)، الگوی پراش پرتو ایکس(XRD) و میکروسکوپ الکترونی عبوری (TEM) استفاده شد. الکترود کربن‌شیشه‌ای اصلاح‌شده با اکسید گرافن عامل‌دار شده با D- پنیسیل آمین (DPA-GO/GCE) تهیه و رفتار الکتروشیمیایی آن در حضور کاتیون‌های مس(II) به روش ولتامتری چرخه‌ای بررسی شد و نتایج حاصله نشان‌دهنده عملکرد بهتر الکترود اصلاح شده با DPA-GO در مقایسه با الکترود برهنه و الکترود اصلاح شده با اکسید گرافن می‌باشد که به ساختار نانومتری GO و قابلیت کمپلکس‌کنندگی گروه‌های عاملی دارای گوگرد، نیتروژن و اکسی‍ژن موجود در ساختار DPA مربوط است. سنسور تهیه شده برای اندازه‌گیری انتخابی و حساس کاتیون‌های مس(II) به روش ولتامتری برهنه‌سازی آندی موج مربعی (SW-ASV) به کار برده شد و تأثیر پارامترهای مؤثر در عملکرد سنسور بررسی شد و شرایط بهینه برای عملکرد سنسور تعیین گردید. در شرایط بهینه بدست آمده الکترود تهیه شده در محدوده غلظتی 1 پیکومولار تا 1/0 میکرومولار دارای پاسخ خطی بوده و حد تشخیص آن 31/0 پیکومولار می‌باشد. سنسور پیشنهادی بطور رضایت‌بخشی برای اندازه‌گیری کاتیون مس در نمونه‌های حقیقی آب با تکرارپذیری و پایداری مناسب مورد استفاده قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Development of copper electrochemical sensor using D-penicillamine functionalized graphene oxide modified electrode

نویسندگان [English]

  • Maryam Khordadpour Siahkal Mahalleh 1
  • Fatemeh Ahour 2
  • Sajjad Keshipour 2
1 Nanotechnology Research Group, Faculty of Science, Urmia University, Urmia, Iran
2 Nanotechnology Research Group, Faculty of Science, Urmia University, Urmia, Iran. Nanotechnology Research Center, Urmia University, Urmia, Iran.
چکیده [English]

In this research, graphene oxide (GO) was functionalized with D-penicillamine (DPA) and used to develop an electrochemical sensor for Cu(II) cation. For the successful synthesis of D-penicillamine-functionalized graphene oxide (DPA-GO), Fourier Transfer Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), X-ray diffraction pattern (XRD), and Transmission Electron Microscopy (TEM) are used. DPA-GO modified glassy carbon electrode (DPA-GO / GCE) was prepared and its electrochemical behavior was studied in the presence of Cu(II) cations by cyclic voltammetry, and the results showed the better performance of the DPA-GO-modified electrode compared to unmodified and GO-modified electrode, which related to GO nanostructure and complexing ability of sulfur, nitrogen, and oxygen-containing functional groups in the DPA structure. The prepared sensor was used for the selective and sensitive measurement of Cu(II) cations by square-wave anodic stripping voltammetry (SW-ASV) and the factors affecting the sensor performance were investigated and optimum conditions for sensor operation were determined. Under the optimal conditions, the prepared electrode has a linear response in the range of 1 pM to 0.1 µM and its detection limit was 0.31 pM. The proposed sensor was used satisfactorily to measure copper cation in real water samples with suitable reproducibility and stability.

کلیدواژه‌ها [English]

  • Modified electrode
  • Graphene oxide
  • D-penicillamine
  • Stripping voltammetry
  • Copper cation

This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

[1] Faraji, M., Yamini, Y., & Shariati, S. (2009). Application of cotton as a solid phase extraction sorbent for on-line preconcentration of copper in water samples prior to inductively coupled plasma optical emission spectrometry determination. Journal of hazardous materials166(2-3), 1383-1388.
[2] Pinto, J. J., Moreno, C., & García-Vargas, M. (2002). A simple and very sensitive spectrophotometric method for the direct determination of copper ions. Analytical and bioanalytical chemistry373, 844-848.
[3] Salinas-Castillo, A., Ariza-Avidad, M., Pritz, C., Camprubí-Robles, M., Fernández, B., Ruedas-Rama, M. J. & Capitan-Vallvey, L. F. (2013). Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chemical Communications49(11), 1103-1105.
[4] Crisponi, G., Nurchi, V. M., Fanni, D., Gerosa, C., Nemolato, S., & Faa, G. (2010). Copper-related diseases: from chemistry to molecular pathology. Coordination chemistry reviews254(7-8), 876-889.
[5] Zhao, H., Xue, C., Nan, T., Tan, G., Li, Z., Li, Q. X. & Wang, B. (2010). Detection of copper ions using microcantilever immunosensors and enzyme-linked immunosorbent assay. Analytica Chimica Acta676(1-2), 81-86.
[6] Samuele, A., Mangiagalli, A., Armentero, M. T., Fancellu, R., Bazzini, E., Vairetti, M. & Blandini, F. (2005). Oxidative stress and pro-apoptotic conditions in a rodent model of Wilson's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease1741(3), 325-330.
[7] Ferreira, S. L., Lemos, V. A., Moreira, B. C., Costa, A. S., & Santelli, R. E. (2000). An on-line continuous flow system for copper enrichment and determination by flame atomic absorption spectroscopy. Analytica chimica acta403(1-2), 259-264.
[8] Karadjov, M., Velitchkova, N., Veleva, O., Velichkov, S., Markov, P., & Daskalova, N. (2016). Spectral interferences in the determination of rhenium in molybdenum and copper concentrates by inductively coupled plasma optical emission spectrometry (ICP-OES). Spectrochimica Acta Part B: Atomic Spectroscopy119, 76-82.
[9] Gotoh, S., Teshima, N., Sakai, T., Ida, K., & Ura, N. (2003). Flow-injection simultaneous determination of copper and iron in patient sera with 2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino) aniline and its application to disease diagnosis. Analytica chimica acta499(1-2), 91-98.
[10] Long, Y. F., Huang, C. Z., He, R. X., & Li, Y. F. (2008). Selectively light scattering spectrometric detection of copper (II) based on a new synthesized oxamide ligand. Analytica chimica acta624(1), 128-132.
[11] Pinto, J. J., Moreno, C., & García-Vargas, M. (2002). A simple and very sensitive spectrophotometric method for the direct determination of copper ions. Analytical and bioanalytical chemistry373, 844-848.
[12] Zhu, Y., Inagaki, K., & Chiba, K. (2009). Determination of Fe, Cu, Ni, and Zn in seawater by ID-ICP-MS after preconcentration using a syringe-driven chelating column. Journal of Analytical Atomic Spectrometry24(9), 1179-1183.
[13] Salinas-Castillo, A., Ariza-Avidad, M., Pritz, C., Camprubí-Robles, M., Fernández, B., Ruedas-Rama, M. J. & Capitan-Vallvey, L. F. (2013). Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chemical Communications49(11), 1103-1105.
[14] Jakmunee, J., & Junsomboon, J. (2008). Determination of cadmium, lead, copper and zinc in the acetic acid extract of glazed ceramic surfaces by anodic stripping voltammetric method. Talanta77(1), 172-175.
[15] Gupta, V. K., Singh, L. P., Singh, R., Upadhyay, N., Kaur, S. P., & Sethi, B. (2012). A novel copper (II) selective sensor based on dimethyl 4, 4′ (o-phenylene) bis (3-thioallophanate) in PVC matrix. Journal of Molecular Liquids174, 11-16.
[16] Ostojić, J., Herenda, S., Bešić, Z., Miloš, M., & Galić, B. (2017). Advantages of an electrochemical method compared to the spectrophotometric kinetic study of peroxidase inhibition by boroxine derivative. Molecules, 22(7), 1120.
[17] Shahrokhian, S., & Rastgar, S. (2012). Construction of an electrochemical sensor based on the electrodeposition of Au–Pt nanoparticles mixtures on multi-walled carbon nanotubes film for voltammetric determination of cefotaxime. Analyst137(11), 2706-2715.
[18] Shervedani, R. K., & Mozaffari, S. A. (2006). Copper (II) nanosensor based on a gold cysteamine self-assembled monolayer functionalized with salicylaldehyde. Analytical chemistry78(14), 4957-4963.
[19] Wu, Z., Liao, J., Xiao, J., Liu, J., Yang, J., Zhou, X., & Xin, M. (2013). Amino‐Containing Ultrafine Organosilica‐Nanoparticle‐Modified Au Electrode for the Determination of Cu (II) Ions. Electroanalysis25(11), 2557-2566.
[20] Si, Y., Liu, J., Wang, A., Niu, S., & Wan, J. (2015). A chitosan-graphene electrochemical sensor for the determination of copper (II). Instrumentation Science & Technology43(3), 357-368.
[21] Sharifi, K., & Es' haghi, M. (2020). Synthesis of nanocomposite based on molecularly imprinted polymer electrode modified by gold nanoparticles and graphene oxide to prepare the diazinon-sensitive electrochemical sensor. Applied Chemistry1399(Special Letter to the Fourth Conference on Applied Chemistry in Iran, August 1998), 39-49. (in persion)
[22] Asadpour-Zeynali, K., & Bigdeloo, K. (2020). Preparation of modified glass carbon electrode with graphene/chitosan quantum dots and its application in electrocatalytic measurements of acetaminophen. Applied Chemistry1399(Special Letter to the Fourth Conference on Applied Chemistry in Iran, August 1998), 68-79. (in persion)
[23] Kamyabi, M., Niazi, S., & Asgari, Z. (2019). Electrochemical insulin sensor based on complex tris (1-10, phenanthroline) cobalt (II) and multiwalled carbon nanotubes modified glassy carbon electrode. Applied Chemistry14(51), 223-238. (in persion)
[24] Shabani, R., Mozaffari, S. A., Husain, S. W., & SABER, T. M. (2009). Selective nanosensing of copper (II) ion using L-Lysine functionalized gold cysteamine self-assembled monolayer. Iranian Journal of Science & Technology, Transaction A, 33, 335-347.
[25] Saldaña, J., Gallay, P., Gutierrez, S., Eguílaz, M., & Rivas, G. (2020). Multi-walled carbon nanotubes functionalized with bathocuproinedisulfonic acid: analytical applications for the quantification of Cu (II). Analytical and bioanalytical chemistry412, 5089-5096.
[26] Wang, Y., Zhao, S., Li, M., Li, W., Zhao, Y., Qi, J., & Cui, X. (2017). Graphene quantum dots decorated graphene as an enhanced sensing platform for sensitive and selective detection of copper (II). Journal of Electroanalytical Chemistry797, 113-120.
[27] Wu, Y. L., Bai, F., Yang, T., Chen, J. H., Su, L., & Hou, X. M. (2017). Selective determination of copper (II) based on aluminum silicon carbide nanoparticles modified glassy carbon electrode by square wave stripping voltammetry. Electroanalysis29(10), 2224-2231.
[28] Ahour, F., & Taheri, M. (2018). Anodic stripping voltammetric determination of copper (II) ions at a graphene quantum dot-modified pencil graphite electrode. Journal of the Iranian Chemical Society15, 343-350. [29] Taheri, M., Ahour, F., & Keshipour, S. (2018). Sensitive and selective determination of Cu2+ at d-penicillamine functionalized nano-cellulose modified pencil graphite electrode. Journal of Physics and Chemistry of Solids117, 180-187.
[30] Gad, E. S., Ali, T. A., Elsayed, A. A., Mohamed, G. G., & El-Bary, H. A. (2020). Selective Determination of Copper (II) Based on Cu (II)-Metal-Organic Framework in different Water Samples. Int. J. Electrochem. Sci15, 11904-11919.
[31] Mei, C. J., Yusof, N. A., & Alang Ahmad, S. A. (2021). Electrochemical determination of lead & copper ions using thiolated calix [4] arene-modified screen-printed carbon electrode. Chemosensors9(7), 157.
[32] Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: past, present and future. Progress in materials science56(8), 1178-1271.
[33] Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society80(6), 1339-1339.
[34] Niu, L. M., Luo, H. Q., Li, N. B., & Song, L. (2007). Electrochemical detection of copper (II) at a gold electrode modified with a self-assembled monolayer of penicillamine. Journal of Analytical Chemistry62, 470-474.
[35] Hadidi, M., Ahour, F., & Keshipour, S. (2022). Electrochemical determination of trace amounts of lead ions using D-penicillamine-functionalized graphene quantum dot-modified glassy carbon electrode. Journal of the Iranian Chemical Society19(4), 1179-1189.
[36] Keshipour, S., Kulaei, M., & Ahour, F. (2019). Graphene oxide nano-sheets-supported Co (II)-d-penicillamine as a green and highly selective catalyst for epoxidation of styrene. Iranian Journal of Science and Technology, Transactions A: Science43, 85-94.
[37] Babazadeh, S., Moghaddam, P. A., Keshipour, S., & Mollazade, K. (2020). Colorimetric sensing of imidacloprid in cucumber fruits using a graphene quantum dot/Au (III) chemosensor. Scientific Reports10(1), 14327.
[38] Al-Azmi, A., & Keshipour, S. (2020). Dimaval as an efficient ligand for binding Ru (III) on cross-linked chitosan aerogel: Synthesis, characterisation and catalytic investigation. Cellulose27, 895-904.
[39] Keshipour, S., & Mohammad-Alizadeh, S. (2021). Nickel phthalocyanine@ graphene oxide/TiO2 as an efficient degradation catalyst of formic acid toward hydrogen production. Scientific Reports11(1), 16148.
[40] Anson, F. C. (1966). Innovations in the study of adsorbed reactants by chronocoulometry. Analytical chemistry38(1), 54-57.
[41] García-Miranda Ferrari, A., Foster, C. W., Kelly, P. J., Brownson, D. A., & Banks, C. E. (2018). Determination of the electrochemical area of screen-printed electrochemical sensing platforms. Biosensors8(2), 53.
[42] B Bagherzadeh, M., Pirmoradian, M., & Riahi, F. (2014). Electrochemical detection of Pb and Cu by using DTPA functionalized magnetic nanoparticles. Electrochimica Acta115, 573-580.
[43] Maddipatla, D., Saeed, T. S., Narakathu, B. B., Obare, S. O., & Atashbar, M. Z. (2020). Incorporating a novel hexaazatriphenylene derivative to a flexible screen-printed electrochemical sensor for copper ion detection in water samples. IEEE Sensors Journal20(21), 12582-12591.
[44] Saldaña, J., Gallay, P., Gutierrez, S., Eguílaz, M., & Rivas, G. (2020). Multi-walled carbon nanotubes functionalized with bathocuproinedisulfonic acid: analytical applications for the quantification of Cu (II). Analytical and bioanalytical chemistry412, 5089-5096.
[45] Mei, C. J., Yusof, N. A., & Alang Ahmad, S. A. (2021). Electrochemical determination of lead & copper ions using thiolated calix [4] arene-modified screen-printed carbon electrode. Chemosensors9(7), 157.
[46] Maddipatla, D., Saeed, T. S., Narakathu, B. B., Obare, S. O., & Atashbar, M. Z. (2020). Incorporating a novel hexaazatriphenylene derivative to a flexible screen-printed electrochemical sensor for copper ion detection in water samples. IEEE Sensors Journal20(21), 12582-12591.
[47] Hassine, C. B. A., Bourourou, M., Barhoumi, H., & Jaffrezic, N. (2019). Copper (II) electrochemical sensor based on aluminon as chelating ionophore. IEEE Sensors Journal19(19), 8605-8611.
[48] Xiong, W., Zhang, P., Liu, S., Lv, Y., & Zhang, D. (2021). Catalyst-free synthesis of phenolic-resin-based carbon nanospheres for simultaneous electrochemical detection of Cu (II) and Hg (II). Diamond and Related Materials111, 108170.
[49] Bagheri, A., & Hassani Marand, M. (2020). Voltammetric and Potentiometric Determination of Cu 2+ Using an Overoxidized Polypyrrole Based Electrochemical Sensor. Russian Journal of Electrochemistry56, 453-461.