]1[ Karim, A., & Andersson, J. Y. (2013). Infrared detectors: Advances, challenges and new technologies. IOP Conference Series: Materials Science and Engineering, 51(1), 012001.
]2[ Gehrz, R. D., Becklin, E. E., De Pater, I., Lester, D. F., Roellig, T. L., & Woodward, C. E. (2009). A new window on the cosmos: The stratospheric observatory for infrared astronomy (SOFIA). Advances in Space Research, 44(4), 413-432.
]3[ Rogalski, A. (2002). Infrared detectors: an overview. Infrared physics & technology, 43(3), 187-210.
]4[ Aleks, M., Jagtap, C., Kadam, V., Kolev, G., Denishev, K., & Pathan, H. (2021). An overview of microelectronic infrared pyroelectric detector. Engineered Science, 16, 82-89.
]5[ Verma, V. B., Korzh, B., Walter, A. B., Lita, A. E., Briggs, R. M., Colangelo, M., & Shaw, M. D. (2021). Single-photon detection in the mid-infrared up to 10 μm wavelength using tungsten silicide superconducting nanowire detectors. APL Photonics, 6(5), 056101.
]6[ Rogalski, A. (2011). Recent progress in infrared detector technologies. Infrared Physics & Technology, 54(3), 136-154.
]7 [ Bang, D., Chang, Y. W., Park, J., Lee, J., Yoo, K. H., Huh, Y. M., & Haam, S. (2012). Fabrication of a near-infrared sensor using a polyaniline conducting polymer thin film. Thin Solid Films, 520(22), 6818-6821.
]8[ Maimon, S., & Wicks, G. W. (2006). nBn detector, an infrared detector with reduced dark current and higher operating temperature. Applied Physics Letters, 89(15), 151109.
]9[ Bhan, R. K., & Dhar, V. (2019). Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto-Electronics Review, 27(2), 174-193.
]10[ Chen, S., You, L., Zhang, W., Yang, X., Li, H., Zhang, L., & Xie, X. (2015). Dark counts of superconducting nanowire single-photon detector under illumination. Optics express, 23(8), 10786-10793.
]11[ Wan, M. (2008). A template‐free method towards conducting polymer nanostructures. Advanced Materials, 20(15), 2926-2932.
]12 [You, L., Wu, J., Xu, Y., Hou, X., Fang, W., Li, H., & Xie, X. (2017). Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths. Optics Express, 25(25), 31221-31229.
]13 [Adhikary, S., & Chakrabarti, S. (2018). Quaternary capped in (Ga) As/GaAs quantum dot infrared photodetectors (Vol. 23). Singapore: Springer.
]14 [Meng, Y., Zou, K., Hu, N., Xu, L., Lan, X., Steinhauer, S., & Hu, X. (2022). Fractal superconducting nanowires detect infrared single photons with 84% system detection efficiency, 1.02 polarization sensitivity, and 20.8 ps timing resolution. Acs Photonics, 9(5), 1547-1553.
]15[ Rogalski, A. (2003). Infrared detectors: status and trends. Progress in quantum electronics, 27(2), 59-210.
]16[ Lijing, Y., Libin, T., Wenyun, Y., & Qun, H. (2021). Research progress of uncooled infrared detectors. Infrared and Laser Engineering, 50(1), 20211013-1.
]17 [Canedy, C. L., Bewley, W. W., Merritt, C. D., Kim, C. S., Kim, M., Warren, M. V., & Meyer, J. R. (2019). Resonant-cavity infrared detector with five-quantum-well absorber and 34% external quantum efficiency at 4 μm. Optics express, 27(3), 3771-3781.
]18[ Yadav, P. K., Ajitha, B., Reddy, Y. A. K., & Sreedhar, A. (2021). Recent advances in development of nanostructured photodetectors from ultraviolet to infrared region: A review. Chemosphere, 279, 130473.
]19 [Steenbergen, E. H., Morath, C. P., Maestas, D., Jenkins, G. D., & Logan, J. V. (2019). Comparing II-VI and III-V infrared detectors for space applications. Infrared Technology and Applications XLV, 11002, 299-307.
]20 [Boone, N., Zhu, C., Smith, C., Todd, I., & Willmott, J. R. (2018). Thermal near infrared monitoring system for electron beam melting with emissivity tracking. Additive Manufacturing, 22, 601-605.
]21[ Jackowska, K., Bieguński, A. T., & Tagowska, M. (2008). Hard template synthesis of conducting polymers: a route to achieve nanostructures. Journal of Solid State Electrochemistry, 12, 437-443.
]22[ Nambiar, S., & Yeow, J. T. (2011). Conductive polymer-based sensors for biomedical applications. Biosensors and Bioelectronics, 26(5), 1825-1832.
]23[Hui, Y., & Rinaldi, M. (2013). High performance NEMS resonant infrared detector based on an aluminum nitride nano-plate resonator.
]24[ Aleksandrova, M. (2022). Characterization of infrared detector with lead-free perovskite and core–shell quantum dots on silicon substrate. Journal of Materials Science: Materials in Electronics, 33(31), 23900-23909.
]25[ Mazzara, F., Patella, B., D’Agostino, C., Bruno, M. G., Carbone, S., Lopresti, F., & Inguanta, R. (2021). PANI-based wearable electrochemical sensor for pH sweat monitoring. Chemosensors, 9(7), 169.
]26[ Kinch, M. A. (2000). Fundamental physics of infrared detector materials. Journal of Electronic Materials, 29, 809-817.
]27 [Astaf'ev, O., Kavano, I., Komiyama, S., Gavrilenko, V. I., & Erofeeva, I. V. (2002). Response time of the quantum well Hall effect detector in far IR radiation region. Izvestiya Akademii Nauk. Rossijskaya Akademiya Nauk. Seriya Fizicheskaya, 66(2), 243-246.
]28[ Larciprete, M. C., Albertoni, A., Belardini, A., Leahu, G., Li Voti, R., Mura, F., & Nasibulin, A. G. (2012). Infrared properties of randomly oriented silver nanowires. Journal of Applied Physics, 112(8), 083503.
]29[ Jones, A. C., Olmon, R. L., Skrabalak, S. E., Wiley, B. J., Xia, Y. N., & Raschke, M. B. (2009). Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. Nano letters, 9(7), 2553-2558.
]30 [Ansari-asl, Z., Neisi, Z., Sedaghat, T., & Nobakht, V. (2019). Synthesis, characterization, and electrochemical properties of polyaniline/Co (II) metal-organic framework composites. Applied Chemistry, 14(51), 251-266. (in persian)
]31 [Xiang, H., Xin, C., Hu, Z., Aigouy, L., Chen, Z., & Yuan, X. (2021). Long-term stable near-infrared–short-wave-infrared photodetector driven by the photothermal effect of polypyrrole nanostructures. ACS Applied Materials & Interfaces, 13(38), 45957-45965.
]32 [Nosrati, R., (2019), Design and fabrication of infrared detector baced on multiwall carbon nanotubes, Master of Science (M.Sc.) Thesis, The Tbriz University)
]33 [Guan, H., Li, W., Yang, R., Su, Y., & Li, H. (2022). Microstructured PVDF film with improved performance as flexible infrared sensor. Sensors, 22(7), 2730.
]34 [Amiri, M., & Alizadeh, N. (2020). Highly photosensitive near infrared photodetector based on polypyrrole nanoparticle incorporated with CdS quantum dots. Materials Science in Semiconductor Processing, 111, 104964.