سنتز، شناسایی و مطالعات برهمکنش با DNA کمپلکسهای پلاتینی با لیگاند ایمینی فروسن

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

دانشکده علوم شیمی و نفت، دانشگاه شهید بهشتی، تهران، ایران

چکیده

در این مقاله به منظور بررسی اثرگزاری خواص ضد سرطانی کمپلکسهای پلاتینی، دو ترکیب جدید حاوی لیگاند فروسنیل ایمین به نمایندگی از دو نوع اتصال این لیگاند به مرکز پلاتینی، ترکیبات Pt(Cl)2(dmso)(Imine) (1) و Pt(Me)(dmso)(Imine) (2) که به ترتیب با نحوه اتصال تک کئوردینه به فلز و سیکلومتاله به فلز متصل هستند، سنتز و با استفاده از طیف بینی NMR شناسایی شدند. ترکیبات پلاتینی سنتز شده با توجه به موارد گزارش شده پیشین، توانایی بالقوه مهار رشد سلول‌های سرطانی از طریق ایجاد برهمکنش با DNA این سلول‌ها را دارا هستند. به منظور بررسی این خاصیت از دیدگاه مولکولی، با استفاده از تیتراسیون UV-Vis برهمکنش کمپلکس تک کئوردینه با مولکول DNA مورد بررسی قرار گرفت. همچنین شبیه سازی داکینگ مولکولی با استفاده از مجموعه نرم افزاری Schrödinger برای چهار کمپلکس با نحوه اتصال متفاوت انجام شد و بر اساس داده های شبیه سازی، کمپلکس سیکلومتاله Pt(Cl)(dmso)(Imine) بالاترین برهمکنش را با مولکول DNA داراست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis, Characterization and DNA binding studies of Platinum Complexes with Imine Ferrocene Ligand

نویسندگان [English]

  • Behnam Habibi Shabestary
  • Mohsen Golbon Haghighi
Department of Inorganic Chemistry, Faculty of Chemistry and petroleum sciences, Shahid Behehshti University, Tehran, Iran
چکیده [English]

In this manuscript,, the synthesis and characterization by NMR spectroscopy of the two novel platinum complexes with the imine ferocene with different coordination mode to platinum center, Pt(Cl)2(dmso)(Imine) (1) and Pt(Me)(dmso)(Imine) (2) was introduced , in which the ligand was attached as the monodentate ligand in (1) and in (2) the ligand was attached as the cyclomatalated bidentate ligand , were introduced for checking their anticancer properties. Also their interaction waith DNA was studied by UV-Vis titration technique. In addition, Molecular docking simulation by Schrödinger sofware was used for checking the various possible attachment mode of their interaction with DNA.

کلیدواژه‌ها [English]

  • Platinum
  • Ferrocene
  • Complex
  • DNA

This is an open access article under the CC-BY-SA 4.0 license.( https://creativecommons.org/licenses/by-sa/4.0/)

[1] Skuse, A. (2015). Constructions of cancer in early modern England: ravenous natures (p. 219). Springer Nature.
[2] Heitzer, E., Auinger, L., & Speicher, M. R. (2020). Cell-free DNA and apoptosis: how dead cells inform about the living. Trends in molecular medicine, 26(5), 519-528.
[3] Brabec, V., & Nováková, O. (2006). DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resistance Updates, 9(3), 111-122.
[4] Tabatabaei Rezaei, S. J., Mashhadi Malekzadeh, A., Sarbaz, L., Niknejad, H., & Ramazani, A. (2020). Hyperbranched polymers functionalized magnetic nanoparticles for targeted delivery and intracellular release of cisplatin. Applied Chemistry, 15(54), 55-70. (in persian)
[5] Roos, W. P., & Kaina, B. (2006). DNA damage-induced cell death by apoptosis. Trends in molecular medicine, 12(9), 440-450.
[6] Wang, D., & Lippard, S. J. (2005). Cellular processing of platinum anticancer drugs. Nature reviews Drug discovery, 4(4), 307-320.
[7] Abbasi, P., & Shafaatian, B. (2020). Synthesis, Characterization, Fluorescence and Electrochemical Studies of New Ferrocene Schiff base ligand Containing Nitrogen Donor Atoms and Its Palladium (II), Nickel (II) and Copper (II) Complexes. Applied Chemistry, 15(55), 111-124. (in persian)
[8] Arabali, V. (2016). Electrocatalytic Determination of Captopril using NiO Nanoparticle/Acetylferrrocene Modified Electrode in Biological and Pharmaceutical Samples J. Of Applied Chemistry. 11 9. (in persian)
[9] Acevedo-Morantes, C. Y., Meléndez, E., Singh, S. P., & Ramírez-Vick, J. E. (2012). Cytotoxicity and reactive oxygen species generated by ferrocenium and ferrocene on MCF7 and MCF10A cell lines. J Cancer Sci Ther, 4(9), 271-275.
[10] Van Staveren, D. R., & Metzler-Nolte, N. (2004). Bioorganometallic chemistry of ferrocene. Chemical reviews, 104(12), 5931-5986.
[11] Nabavizadeh, S. M., Niroomand Hosseini, F., Niknam, F., Hamidizadeh, P., Hoseini, S. J., Ford, P. C., & Abu-Omar, M. M. (2019). Chelating and Bridging Roles of 2-(2-Pyridyl) benzimidazole and Bis (diphenylphosphino) acetylene in Stabilizing a Cyclic Tetranuclear Platinum (II) Complex. Inorganic chemistry, 58(21), 14608-14616.
[12] Imrie, C., Nyamori, V. O., & Gerber, T. I. (2004). Solvent-free synthesis of ferrocenylimines. Journal of organometallic chemistry, 689(9), 1617-1622.
[13] Frisch, M. J. (2009). Gaussian 09 revision A. 02. (No Title).
[14] Cossi, M., Scalmani, G., Rega, N., & Barone, V. (2002). New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. The Journal of Chemical Physics, 117(1), 43-54.
[15] Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: a review. Biophysical reviews, 9, 91-102.
[16] Schrödinger Release 2015-2: Schrödinger, (2015).
[17] Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., ... & Shenkin, P. S. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of medicinal chemistry, 47(7), 1739-1749.
[18] T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye, W. T. Pollard, J. L. Banks, Journal of medicinal chemistry. 47 (2004) 1750.
[19] Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., ... & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein− ligand complexes. Journal of medicinal chemistry, 49(21), 6177-6196.
[20] Stevanović, D., Bertuzzi, G., Mazzanti, A., Fochi, M., & Bernardi, L. (2018). Catalytic   Enantioselective Povarov Reactions of Ferrocenecarbaldehyde‐Derived Imines–Brønsted Acid Catalysis at Parts‐Per‐Million Level Loading. Advanced Synthesis & Catalysis, 360(5), 893-900.
[21] Benesi, H. A., & Hildebrand, J. H. J. (1949). A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Journal of the American Chemical Society, 71(8), 2703-2707.
[22] Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert opinion on drug discovery, 10(5), 449-461.