[1] Wisniak, J. (2009). Reseña de" Carl Wilhelm Scheele. Revista CENIC. Ciencias Químicas, 40(3), 165-173.
[3] Tang, S. C., & Yang, J. H. (2018). Dual effects of alpha-hydroxy acids on the skin. Molecules, 23(4), 863.
[4] Morganti, P. (1996). Alpha hydroxy acids in cosmetic dermatology. skin, 1, 10.
[5] Kornhauser, A., Coelho, S. G., & Hearing, V. J. (2012). Effects of cosmetic formulations containing hydroxyacids on sun-exposed skin: Current applications and future developments. Dermatology Research and Practice, 2012.
[6] Abdel-Salam, O. M. E., Youness, E. R., Mohammed, N. A., Youssef Morsy, S. M., Omara, E. A. & Sleem, A. A. (2014). Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice. Journal of medicinal food.
[7] Brima, E. I. & Abbas, A. M. (2014). Determination of citric acid in soft drinks, juice drinks and energy drinks using titration. Int. J. Chem. Stud, 1(6), 30-34.
[8] Penniston, K. L., Nakada, S. Y., Holmes, R. P., & Assimos, D. G. (2008). Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. Journal of Endourology, 22(3), 567-570.
[9] Jacobs, S. L., & Lee, N. D. (1964). Determination of citric acid in serum and urine using Br82. Journal of Nuclear Medicine, 5(4), 297-301.
[10] Saffran, M., Denstedt, O. F. (1948). A rapid method for the determination of citric acid. Journal of Biological Chemistry, 175, 849-855.
[11] Hartford, C. G. (1962). Rapid Spectrophotometric Method for the Determination of Itaconic, Citric, Aconitic, and Fumaric Acids. Analytical Chemistry, 34(3), 426-428.
[12] Taraborelli, J. A., & Upton, R. P. (1975). Enzymatic determination of citrate in detergent products. Journal of the American Oil Chemists' Society, 52(7), 248-251.
[13] Mato, I., Huidobro, J. F., Cendo´n, Muniategui, V., Muniategui, S., Ferna´ndez-Muino, M. A. & Teresa Sancho, M. (1998). Enzymatic determination of citric acid in honey by using polyvinylpolypyrrolidone clarification. Journal of agricultural and food chemistry, 46(1), 141-144.
[14] Guerrant, G. O., Lambert, M. A., & Moss, C. W. (1982). Analysis of short-chain acids from anaerobic bacteria by high-performance liquid chromatography. Journal of Clinical Microbiology, 16(2), 355-360.
[15] Weikle, K. (2012). Determination of citric acid in fruit juices using HPLC. Concordia college journal of analytical chemistry, 3, 57-62.
[16] Saccani, G., Gherardi, S., Trifiro, A., Soresi Bordini, C., Calza, M. & C. Freddi. (1995). Use of ion chromatography for the measurement of organic acids in fruit juices. Journal of Chromatography A, 706(1-2), 395-403.
[17] Chepurnoi, I. & Bolbat, K. (1996). Development of methods for gas chromatographic measurement of sugars and organic acids in the urine of patients with diabetes mellitus. Klinicheskaia laboratornaia diagnostika, (3), 48-50.
[18] Yedur, S., & Berglung, K. (1996). Use of fluorescence spectroscopy in concentration and supersaturation measurements in citric acid solutions. Applied spectroscopy, 50(7), 866-870.
[19] van Staden, J. F., Mashamba, M. G., & Stefan, R. I. (2002). Determination of the total acidity in soft drinks using potentiometric sequential injection titration. Talanta, 58(6), 1109-1114.
[20] Lahav, O., Shlafman, E., & Cochva, M. (2005). Determination of low citric acid concentrations in mixture of weak acid/bases. Water SA, 31(4), 497-502.
[21] Khajehsharifi, H., & Bordbar, M. M. (2015). A highly selective chemosensor for detection and determination of cyanide by using an indicator displacement assay and PC-ANN and its logic gate behavior. Sens. Actuators B Chem, 209, 1015-1022.
[22] Janowski, V., & Severin, K. (2011). Carbohydrate sensing with a metal-based indicator displacement assay. Chem. Commun, 47(30), 8521-8523.
[23] Tavallali, H., Deilamy-Rad, G., & Mosallanejad, N. (2018). Development of a New Colorimetric Chemosensor for Selective Determination of Urinary and Vegetable Oxalate Concentration Through an Indicator Displacement Assay (IDA) in Aqueous Media. Food Technol. Biotechnol, 56(3), 329.
[24] Khajehsharifi, H., & Sheini, A. (2014). A selective naked-eye detection and determination of cysteine using an indicator-displacement assay in urine sample. Sens. Actuators B: Chem, 199, 457-462.
[25] Sasaki, Y., Zhang, Z. & Minami, T. (2019). A saccharide chemosensor array developed based on an indicator displacement assay using a combination of commercially available reagents. Front. Chem, 7, 49.
[26] Wu, D., Sedgwick, A. C., Gunnlaugsson, T., Akkaya, E. U., Yoon, J., & James,T. D. (2017). Fluorescent chemosensors: the past, present and future. Chem. Soc. Rev, 46(23), 7105-7123.
[28] Sangal, S. P. (1967). Metal chelates of lanthanoids in aqueous solution and their analytical applications. J. Prakt. Chem, 36(3‐4), 126-137.
[29] Salnikov, Y. I., Devyatov, F. V., Zhuravleva, N. E., & Golodnitskaya, D. V. (1984). Complex-formation of nickel (II) and cobalt (II) with citric-acid. Zhur. Neorg. Khim, 29(9), 2273-2276.
[30] Zabiszak, M., Nowak, M., Taras-Goslinska, K., Kaczmarek, M. T., Hnatejko, Z., & Jastrzab, R. (2018). Carboxyl groups of citric acid in the process of complex formation with bivalent and trivalent metal ions in biological systems. J. Inorg. Biochem, 182, 37-47