[1]. Akelah, A., & Sherrington, D. C. (1981). Application of functionalized polymers in organic synthesis. Chemical Reviews, 81(6), 557-587.
[2]. Chiroli, V., Benaglia, M., Puglisi, A., Porta, R., Jumde, R. P., & Mandoli, A. (2014). A chiral organocatalytic polymer-based monolithic reactor. Green Chemistry, 16(5), 2798-2806.
[3]. Fisera, R., & Kralik, M. (1997). Catalysts based on organic polymers, their advantages and disadvantages, preparation, and industrial applications. Chemické listy, 91(6).
[4]. Duan, X., Xiao, J., Yin, Q., Zhang, Z., Mao, S., & Li, Y. (2012). Amphiphilic graft copolymer based on poly (styrene-co-maleic anhydride) with low molecular weight polyethylenimine for efficient gene delivery. International journal of nanomedicine, 4961-4972.
[5]. Mirani Nezhad, S., Pourmousavi, S. A., & Nazarzadeh Zare, E. (2022). Poly (styrene-co-maleic anhydride) modified with nickel sulfate and its application in the synthesis of 2-amino-4H-chromenes. Applied Chemistry, 17(62), 115-138. (in persian)
[6]. Moghaddam, K.G., Hashemianzadeh, S.M. (2015). Computational studies of the interactions between quinazolone derivatives and G-quadruplex DNA as an anticancer strategy. Applied Chemistry. 10 (36) 177-186.
[7]. Gupta, V., Kashaw, S. K., Jatav, V., & Mishra, P. (2008). Synthesis and antimicrobial activity of some new 3–[5-(4-substituted) phenyl-1, 3, 4-oxadiazole-2yl]-2-styrylquinazoline-4 (3H)-ones. Medicinal Chemistry Research, 17(2-7), 205-211.
[8]. Alagarsamy, V., Solomon, V. R., & Dhanabal, K. (2007). Synthesis and pharmacological evaluation of some 3-phenyl-2-substituted-3H-quinazolin-4-one as analgesic, anti-inflammatory agents. Bioorganic & Medicinal Chemistry, 15(1), 235-241.
[9]. Nandy, P., Vishalakshi, M. T., & Bhat, A. R. (2006). Synthesis and antitubercular activity of Mannich bases of 2-methyl-3H-quinazolin-4-ones. Indian Journal of heterocyclic chemistry, 15(3), 293-294.
[10]. Hess, H. J., Cronin, T. H., & Scriabine, A. (1968). Antihypertensive 2-amino-4 (3H)-quinazolinones. Journal of medicinal chemistry, 11(1), 130-136.
[11]. Paneersalvam, P., Raj, T., Ishar, M. P. S., Singh, B., Sharma, V., & Rather, B. (2010). Anticonvulsant activity of Schiff bases of 3-amino-6, 8-dibromo-2-phenyl-quinazolin-4 (3H)-ones. Indian journal of pharmaceutical sciences, 72(3), 375.
[12]. Chen, J., Wu, D., He, F., Liu, M., Wu, H., Ding, J., & Su, W. (2008). Gallium (III) triflate-catalyzed one-pot selective synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones and quinazolin-4 (3H)-ones. Tetrahedron Letters, 49(23), 3814-3818.
[13]. Abdollahi-Alibeik, M., & Shabani, E. (2011). Synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones catalyzed by zirconium (IV) chloride as a mild and efficient catalyst. Chinese Chemical Letters, 22(10), 1163-1166.
[14]. Tajbakhsh, M., Hosseinzadeh, R., Rezaee, P., & Tajbakhsh, M. (2014). H3PW12O40 catalyzed synthesis of benzoxazine and quinazoline in aqueous media. Chinese Journal of Catalysis, 35(1), 58-65.
[15]. Chen, J., Wu, D., He, F., Liu, M., Wu, H., Ding, J., & Su, W. (2008). Gallium (III) triflate-catalyzed one-pot selective synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones and quinazolin-4 (3H)-ones. Tetrahedron Letters, 49(23), 3814-3818.
[16]. Bharathi, A., Roopan, S. M., Kajbafvala, A., Padmaja, R. D., Darsana, M. S., & Kumari, G. N. (2014). Catalytic activity of TiO2 nanoparticles in the synthesis of some 2, 3-disubstituted dihydroquinazolin-4 (1H)-ones. Chinese Chemical Letters, 25(2), 324-326.
[17]. M. T. Maghsoodlou, N, Khorshidi, M. R. Mousavi, N. Hazeri and S.M. Habibi-Khorassani, Res. Chem. Intermed., 41 (2015), 7497.
[18]. Baruah, S. D., & Laskar, N. C. (1996). Styrene‐maleic anhydride copolymers: Synthesis, characterization, and thermal properties. Journal of applied polymer science, 60(5), 649-656.
[19]. Khorsi Damghani, F., Pourmousavi, S. A., & Kiyani, H. (2019). Starch-derived magnetic nanoparticles (Fe3O4@ C-SO3H): Synthesis, Characterization and Its application on the preparation of dihydropyrano [c] chromenes, 2‑Amino-3-cyano‑4H‑pyrans and 2-amino-4H-chromenes derivatives. Applied Chemistry, 14(53), 109-124.
[20]. Safari, J., & Gandomi-Ravandi, S. (2014). Application of the ultrasound in the mild synthesis of substituted 2, 3-dihydroquinazolin-4 (1H)-ones catalyzed by heterogeneous metal–MWCNTs nanocomposites. Journal of Molecular Structure, 1072, 173-178.
[21]. Zhang, Z. H., Lu, H. Y., Yang, S. H., & Gao, J. W. (2010). Synthesis of 2, 3-dihydroquinazolin-4 (1 H)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalyzed by magnetic Fe3O4 nanoparticles in water. Journal of Combinatorial Chemistry, 12(5), 643-646.
[22]. Karimi-Jaberi, Z., & Arjmandi, R. (2011). Acetic acid-promoted, efficient, one-pot synthesis of 2, 3-dihydroquinazolin-4 (1 H)-ones. Monatshefte für Chemie-Chemical Monthly, 142, 631-635.
[23]. Safaei‐Ghomi, J., & Teymuri, R. (2019). A three‐component process for the synthesis of 2, 3‐dihydroquinazolin‐4 (1H)‐one derivatives using nanosized nickel aluminate spinel crystals as highly efficient catalysts. Journal of the Chinese Chemical Society, 66(11), 1490-1498.
[24]. HShaterian, H. R., Oveisi, A. R., & Honarmand, M. (2010). Synthesis of 2, 3-dihydroquinazoline-4 (1 H)-ones. Synthetic Communications®, 40(8), 1231-1242.
[25]. Wang, S., Yin, S., Xia, S., Shi, Y., Tu, S., & Rong, L. (2012). An efficient synthesis of 3-benzylquinazolin-4 (1 H)-one derivatives under catalyst-free and solvent-free conditions. Green Chemistry Letters and Reviews, 5(4), 603-607.