[1] Karetnikov, G. L., Skvortsov, D. A., Lopatukhina, E. V., Nikolaeva, S. N., & Bondarenko, O. B. (2021). Two-stage Regioselective Access to Non-symmetric 3,5-Diarylisoxazoles: Synthesis of Combretastatin A-4 analogues. Asian Journal of Organic Chemistry, 10(12), 3343-3348.
[2] Antonova, Y. A., Nelyubina, Y. V., Ioffe, S. L., Sukhorukov, A. Y., & Tabolin, A. A. (2022). Ring Closure of Nitroalkylmalonates for the Synthesis of Isoxazolines under the Acylation Conditions. Advancd Synthesis & Catalysis, 364(15), 2606-2612.
[3] Macchia, A., Cuomo, V. D., Di Mola, A., Pierri, G., Tedesco, C., Palombi, L., & Massa, A. (2020). On the Necessity of One-Pot Tautomer Trapping in Asymmetric Michael Reactions of Arylideneisoxazol-5-ones. European Journal of Organic Chemistry, 2020(15), 2264-2270.
[4] Torán, R., Vila, C., Sanz-Marco, A., Muñoz, M. C., Pedro, J. R., & Blay, G. (2020). Organocatalytic Enantioselective 1,6-aza-Michael Addition of Isoxazolin-5-ones to p-Quinone Methides. European Journal of Organic Chemistry, 2020(5), 627-630.
[5] Wang, Y., & Du, D. M. (2020). Highly Diastereo- and Enantioselective Synthesis of Isoxazolone-Spirooxindoles via Squaramide-Catalyzed Cascade Michael/Michael Addition Reactions. The Journal of Organic Chemistry, 85(23), 15325-15336.
[6] Panathur, N., Gokhale, N., Dalimba, U., Koushik, P. V., Yogeeswari, P., & Sriram, D. (2015). New indole–isoxazolone derivatives: Synthesis, characterisation and in vitro SIRT1 inhibition studies,
Bioorganic & Medicinal Chemistry Letters,
25(14), 2768-2772.
[7]
Anwar, T.,
Nadeem, H.,
Sarwar, S.,
Naureen, H.,
Ahmed, S.,
Khan, A. U., &
Arif, M. (2020). Investigation of antioxidant and anti-nociceptive potential of isoxazolone, pyrazolone derivatives, and their molecular docking studies.
Drug Development Research, 81(7), 893-903.
[8] Kuchana, M., Bethapudi, D. R., Ediga, R. K., & Sisapuram, Y. (2019). Synthesis, in-vitro antioxidant activity and in-silico prediction of drug-likeness properties of a novel compound: 4-(3,5-Di-tert-butyl4-hydroxybenzylidene)-3-methylisoxazol-5(4H)-one. Journal of Applied Pharmaceutical Science, 9(09), 105-110.
[9] Ali, M., Saleem, U., Anwar, F., Imran, M., Nadeem, H., Ahmad, B., Ali, T., Atta‑ur‑rehman, & Ismail, T. (2021). Screening of Synthetic Isoxazolone Derivative Role in Alzheimer's Disease: Computational and Pharmacological Approach. Neurochemical Research, 46(4), 905-920.
[10] Chande, M. S., Verma, R. S., Barve, P. A., Khanwelkar, R. R., Vaidya, R. B., & Ajaikumar, K. B. (2005). Facile synthesis of active antitubercular, cytotoxic and antibacterial agents: a Michael addition approach.
European Journal of Medicinal Chemistry,
40(11), 1143-1148.
[11] Wazalwar, S. S., Banpurkar, A. R., & Perdih, F. (2017). Aqueous phase synthesis, crystal structure and biological study of isoxazole extensions of pyrazole-4-carbaldehyde derivatives. Journal of Molecular Structure, 1150, 258-267.
[12] Aslam, J., Aslam, R., Alrefaee, S. H., Mobin, M., Aslam, A., Parveen, M., & Hussain, C. M. (2020). Gravimetric, electrochemical, and morphological studies of an isoxazole derivative as corrosion inhibitor for mild steel in 1M HCl. Arabian Journal of Chemistry, 13(11), 7744-7758.
[13] Hemmer, J. R., Page, Z. A., Clark, K. D., Stricker, F., Dolinski, N. D., Hawker, C. J., & de Alaniz, J.R. (2018). Controlling Dark Equilibria and Enhancing Donor–Acceptor Stenhouse Adduct Photoswitching Properties through Carbon Acid Design.
Journal of the American Chemical Society,
140(33), 10425-10429.
[14] Zhang, X. H., Zhan, Y. H., Chen, D., Wang, F., & Wang, L. Y. (2012). Merocyanine dyes containing an isoxazolone nucleus: Synthesis, X-ray crystal structures, spectroscopic properties and DFT studies, Dyes and Pigments, 93(1-3), 1408-1415.
[15] Hua, J., Luo, J., Qin, J., Shen, Y., Zhang, Y., & Lu, Z. (2002). New nonlinear optical chromophores exhibiting good transparency and large nonlinearity: synthesis and characterization of chromophores with stilbene and ring-locked triene as a combined conjugation bridge. Journal of Materials Chemistry, 12(4), 863-867.
[16] Macchia, A., Eitzinger, A.,
Brière, J. F.,
Waser, M., & Massa, A. (2021). Asymmetric Synthesis of Isoxazol-5-ones and Isoxazolidin-5-ones.
Synthesis,
53(1), 107-122.
[17] da Silva, A. F., Fernandes, A. A. G., Thurow, S., Stivanin, M. L., & Jurberg, I. D. (2018). Isoxazol-5-ones as Strategic Building Blocks in Organic Synthesis. Synthesis, 50(13), 2473-2489.
[18] Li, L., Luo, P., Deng, Y., & Shao, Z. (2019). Regioselectivity Switch in Palladium-Catalyzed Allenylic Cycloadditions of Allenic Esters: [4+1] or [4+3] Cycloaddition/Cross-Coupling. Angewandte Chemie International Editionm, 58(14), 4710-4713.
[19] Liu, H., Xing, R., Ren, K., Xue, F., & Feng, C. (2022). α-Iminyl Cation-Involved Indole Construction via Brønsted Acid-Promoted Reaction of Isoxazol-5-ones. The Journal of Organic Chemistry, 87(16), 11226-11230.
[20] Christodoulou, M. S., Giofre, S., Beccalli, E. M., Foschi, F., & Broggini, G. (2020).
Divergent Conversion of 4-Naphthoquinone-substituted 4H-Isoxazolones to Different Benzo-fused Indole Derivatives.
Organic Letters,
22(7), 2735-2739.
[21] Loro, C., Molteni, L., Papis, M., Presti, L. L., Foschi, F., Beccalli, E. M., & Broggini, G. (2022).
Non-Decarboxylative Ruthenium-Catalyzed Rearrangement of 4-Alkylidene-isoxazol-5-ones to Pyrazole- and Isoxazole-4-carboxylic Acids.
Organic Letters,
24(16), 3092-3096.
[22] Risitano, F., Grassi, G., Bruno, G., & Nicolb, F. (1997). Michael Addition versus 1,3-Cycloaddition Reactions of Pyridinium Ylides with (Arylmethylene)isoxazol-5-ones: Diastereoselective Formation of 4-[1-Aryl-2-(1-pyridinio)ethyl]isoxazolium-5-olates. Liehigs Annalen, 1997(2), 441-445.
[23] Okamoto, K., Oda, T., Kohigashi, S., & Ohe, K. (2011). Palladium-Catalyzed Decarboxylative Intramolecular Aziridination from 4H-Isoxazol-5-ones Leading to 1-Azabicyclo[3.1.0]hex-2-enes. Angewandte Chemie International Editionm, 50(48), 11470-11473.
[24] Molteni, L., Loro, C., Christodoulou, M. S., Papis, M., Foschi, F., Beccalli, E. M., & Broggini, G. (2022). Carbonylative Ring Expansion of Epoxides to β-Lactones Using Inorganic Salt as Catalytic Species Precursor. European Journal of Organic Chemistry, 2022(35), e202200496.
[25] Okamoto, K., Shimbayashi, T., Tamura, E., & Ohe, K. (2014). Palladium-Catalyzed Aza-Wittig-Type Condensation of Isoxazol-5(4H)-ones with Aldehydes. Chemistry A European Journal, 20(6), 1490-1494.
[26] Sabitha, G., Reddy, M. M., Archana, B., & Yadav, J. S. (1998). A Convenient Synthesis of Benzopyranacetylenes. Synthetic Communications, 28(4), 573-581.
[27] Wannenmacher, N., Pfeffer, C., Frey, W., & Peters, R. (2022).
Enantioenriched γ-Aminoalcohols, β-Amino Acids, β-Lactams, and Azetidines Featuring Tetrasubstituted Fluorinated Stereocenters via Palladacycle-Catalyzed Asymmetric Fluorination of Isoxazolinones.
The Journal of Organic Chemistry,
87(1), 670-682.
[28] Macchia, A., Summa, F. F., Monaco, G., Eitzinger, A., Ofial, A. R., Di Mola, A., & Massa, A. (2022). Access to β-Alkylated γ-Functionalized Ketones via Conjugate Additions to Arylideneisoxazol-5-ones and Mo(CO)6-Mediated Reductive Cascade Reactions. ACS Omega, 7(10), 8808-8818.
[29] Liu, Q., & Zhang, Y. N. (2011). One-pot synthesis of 3-methyl-4-arylmethyleneisoxazol-5(4H)-ones catalyzed by sodium benzoate in aqueous media: a green chemistry strategy. Bulletin of the Korean Chemical Society. 32(12), 3559-3560.
[30] Laroum, R., & Debache, A. (2018). New eco-friendly procedure for the synthesis of 4-arylmethylene-isoxazol-5(4H)-ones catalyzed by pyridinium p-toluenesulfonate (PPTS) in aqueous medium. Synthetic Communications, 48(2018), 1876-1882.
[31] Patil, M. S., Mudaliar, C., & Chaturbhuj, G .U. (2017). Sulfated polyborate catalyzed expeditious and efficient three-component synthesis of 3-methyl-4-(hetero)arylmethyleneisoxazole-5(4H)-ones. Tetrahedron Letters, 58(33), 3256-3261.
[32] Kiyani, H., & Ghorbani, F. (2016). Expeditious green synthesis of 3,4-disubstituted isoxazole-5(4H)-ones catalyzed by nano-MgO. Research on Chemical Intermediates, 42(9), 6831-6844.
[33] Faramarzi, Z., & Kiyani, H. (2022). Steglich’s Base Catalyzed Three-Component Synthesis of Isoxazol-5-Ones. Polycyclic Aromatic Compdounds. (2022) in press, doi: 10.1080/10406638.2022.2061533.
[34] Faramarzi, Z., & Kiyani, H. (2021). Organocatalyzed Three-Component Synthesis of Isoxazol-5(4H)-ones under Aqueous Conditions. Heterocycles, 102(9), 1779-1790.
[35] Gharehassanlou, S., & Kiyani, H. (2022). A catalytic three-component synthesis of isoxazol-5(4H)-ones under green conditions. Indian Journal of Chemistry, 61(5), 515-520.
[36] Kiyani, H., & Ghorbani, F. (2015). Boric acid-catalyzed multi-component reaction for efficient synthesis of 4H-isoxazol-5-ones in aqueous medium. Research on Chemical Intermediates, 41(5), 2653-2664.
[37] Kiyani, H., Darbandi, H., Mosallanezhad, A., & Ghorbani, F. (2015). 2-Hydroxy-5-sulfobenzoic acid: an efficient organocatalyst for the three-component synthesis of 1-amidoalkyl-2-naphthols and 3,4-disubstituted isoxazol-5(4H)-ones. Research on Chemical Intermediates, 41(10), 7561-7579.
[38] Mashhadinezhad, M., Shirini, F., & Mamaghani, M. (2018). Nanoporous Na+-montmorillonite perchloric acid as an efficient heterogeneous catalyst for synthesis of merocyanine dyes based on isoxazolone and barbituric acid. Microporous and Mesoporous Materials, 262, 269-282.
[39] Safari, J., Ahmadzadeh, M., & Zarnegar, Z. (2016). Sonochemical synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones by amine-modified montmorillonite nanoclay. Catalysis Communications, 86, 91-95.
[40] Maleki, B., Chahkandi, M., Tayebee, R., Kahrobaei, S., Alinezhad, H., & Hemmati, S. (2019). Synthesis and characterization of nanocrystalline hydroxyapatite and its catalytic behavior towards synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in water. Applied Organomettalic Chemistry, 33(10), e5118.
[41] Shanshak, M., Budagumpi, S., Małecki, J. G., & Keri1, R. S. (2020). Green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones using ZnO@Fe3O4 core–shell nanocatalyst in water. Applied Organomettalic Chemistry, 34(4), e5544.
[42] Bhatt, T. D., Gojiya, D. G., Kalavadiya, P. L., & Joshi, H. S. (2019). Rapid, Greener and Ultrasound Irradiated One-Pot Synthesis of 4-(Substituted-1H-Pyrazol-4-yl)Methylene)-3-Isopropylisoxazol-5(4H)-ones and Their In Vitro Anticancer Activity. ChemistrySelect, 4(37), 11125-11129.
[43] Kiyani, H., & Ghorbani, F. (2015). Efficient tandem synthesis of a variety of pyran-annulated heterocycles, 3,4-disubstituted isoxazol-5(4H)-ones, and α,β-unsaturated nitriles catalyzed by potassium hydrogen phthalate in water. Research on Chemical Intermediates, 41(10), 7847-7882.
[44] Kiyani, H., Kanaani, A., Ajloo, D., Ghorbani, F., & Vakili, M. (2015). N-bromosuccinimide (NBS)-promoted, three-component synthesis of α,β-unsaturated isoxazol-5(4H)-ones, and spectroscopic investigation and computational study of 3-methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one. Research on Chemical Intermediates, 41(10), 7739-7773.
[45] Mosallanezhad, A., & Kiyani, H. (2019). Green Synthesis of 3-Substituted-4-arylmethylideneisoxazol-5(4H)-one Derivatives Catalyzed by Salicylic Acid. Current Organocatalysis, 6(1), 28-35.
[46] Mosallanezhad, A., & Kiyani, H. (2018). Sulfanilic Acid-catalyzed Synthesis of 4-arylidene-3-substituted isoxazole-5(4H)-ones. Current Organic Synthesis, 15(5), 715-722.
[47] Kiyani, H., & Ghorbani, F. (2017). Potassium phthalimide as efficient basic organocatalyst for the synthesis of 3,4-disubstituted isoxazol-5(4
H)-ones in aqueous medium.
Journal of Saudi Chemical Society,
21(S1), S112-S119.
[48] Kadam, H. K., Salkar, K., Naik, A. P., Naik, M. M., Salgaonkar, L. N., Charya, L., Pinto, K. C., Mandrekar, V. K., & Vaz, T. (2021). Silica Supported Synthesis and Quorum Quenching Ability of Isoxazolones Against Both Gram Positive and Gram Negative Bacterial Pathogens. ChemistrySelect, 6(42) 11718-11728.
[50] Saikh, F., Das, J., & Ghosh, S. (2013). Synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones by visible light in aqueous ethanol. Terahedron Letters, 54(35), 4679-4682.
[51] Reihani, N., & Kiyani, H. (2021). Three-component Synthesis of 4-Arylidene-3-alkylisoxazol-5(4H)-ones in the Presence of Potassium 2,5-dioxoimidazolidin-1-ide. Current Organic Chemistry, 25(8), 950-962.
[52] Kour, P., Ahuja, M., Sharma, P., Kumar, A., & Kumar, A. (2020). An improved protocol for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones through L-valine-mediated domino three-component strategy. Journal of Chemical Sciences, 132, 0108.
[53] Kiyani, H., Jabbari, M., & Mosallanezhad, A. (2014). Efficient Three-Component Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-ones in Green Media. Jordan Journal of Chemistry, 9(4), 279-288.
[55] Ghogare, R. S., Patankar-Jain, K., & Momin, S. A. H. (2021). A Simple and Efficient Protocol for the Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-Ones Catalyzed by Succinic Acid Using Water as Green Reaction Medium. Letters in Organic Chemistry, 18(2), 83-87.
[56] Barkule, A. B., Gadkari, Y. U., & Telvekar, V. N. (2022). One-Pot Multicomponent Synthesis of 3-Methyl-4-(Hetero)Arylmethylene Isoxazole-5(4H)-Ones Using Guanidine Hydrochloride as the Catalyst under Aqueous Conditions. Polycyclic Aromatic Compounds, 42(9), 5870-5881.
[57] Patil, B. M., Shinde, S. K., Jagdale, A. A., Jadhav, S. D., & Patil, S. S. (2021). Fruit Extract of Averrhoa bilimbi: A Green Neoteric Micellar Medium for Isoxazole and Biginelli-Like Synthesis. Research on Chemical Intermediates, 47(10), 4369-4398.
[58] Popatkar, B. B., Mane, A. A., & Meshram, G. A. (2021). Tomato fruit extract: an environmentally benign catalytic medium for the synthesis of isoxazoles derivatives. Indian Journal of Chemistry, 60B(10), 1362-1367.
[59] Kadu, V. R., & Gholap, S. S. (2019). An Expeditious Synthesis of 3-methyl-4-arylmethylene-isoxazole-5(4H)-ones Using Aqueous Extract of Acacia concinna Pods as a Natural Surfactant Catalyst. Indian Journal of Heterocyclic Chemistry, 29(4), 319-326.
[60] Gulati, S., Singh, R., & Sangwan, S. (2021). Fruit juice mediated multicomponent reaction for the synthesis of substituted isoxazoles and their in vitro bio-evaluation. Scientific Reports, 11, 23563.
[61] Vekariya, R. H., Patel, K. D., & Patel, H. D. (2016). Fruit juice of Citrus limon as a biodegradable and reusable catalyst for facile, eco-friendly and green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones and dihydropyrano[2,3-c]-pyrazole derivatives. Research on Chemical Intermediates, 42(10), 7559-7579.
[62] Daroughezadeh, Z., & Kiyani, H. (2022). Efficient and Aqueous Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-one Derivatives Using Piperazine under Green Conditions. Heterocycles,104(9), 1625-1640.
[63] Nitishkumar, K. S., Sunil, T. U., Srinivas, N. L., & Rajendra, P. P. (2021). Sulfated Tin Oxide: A Convenient Heterogeneous Catalyst for the Synthesis of 4-Arylmethylidene-3-Substituted-Isoxazol-5(4H)-Ones, Letters in Organic Chemistry, 18(12), 945-949.
[64] Oliveira, G. H. C., Ramos, L. M., de Paiva, R. K. C., Passos, S. T. A., Simoes, M. M., Machado, F., Correa, J. R., & Neto, B. A. D. (2021). Synthetic enzyme-catalyzed multicomponent reaction for Isoxazol-5(4H)-one Syntheses, their properties and biological application; why should one study mechanisms? Organic & Biomolecular Chemistry, 19(7), 1514-1531.
[65] Dekamin, M. G., & Peyman, S. Z. (2016). Phthalimide-N-oxyl salts: efficient organocatalysts for facile synthesis of (Z)-3-methyl-4-(arylmethylene)-isoxazole-5(4H)-one derivatives in water. Monatshefte für Chemie - Chemical Monthly, 147(2), 445-450.
[66]
Aleaba, G.,
Khedmatgozar Asadi, S.,
Daneshvar, N., &
Shirini, F. (2022), Introduction of [2,2'-Bipyridine]-1,1'-Diium Perchlorate as a Novel and Highly Efficient Dicationic Brönsted Acidic Organic Salt for the Synthesis of 3-Methyl-4-Arylmethylene Isoxazole-5(4
H)-One Derivatives in Water.
Polycyclic Aromatic Compounds, 42(10), 7569-7581.
[67] Asadi, S. K., Aleaba, G., Daneshvar, N., & Shirini, F. (2021). Sustainable and green synthesis of 3-methyl-4-arylmethylene-isoxazole-5(4H)-one derivatives under mild conditions using a novel phosphoric acid-based molten salt as catalyst. Sustainable Chemistry and Pharmacy, 21, 100442.
[68] Kiyani, H., & Heidari, F. (2021). Efficient and three-component synthesis of 4-arylidene-3-propyl/chlromethylisoxazol-5(4H)-ones under aqueous conditions. Iranian Journal of Chemistry, 3(2), 195-202. (in Persian).
[69] Ghorbani, F., Kiyani, H., & Pourmousavi, S. A. (2020). Facile and expedient synthesis of α,β-unsaturated isoxazol-5(4H)-ones under mild conditions. Research on Chemical Intermediates, 46(1), 943-959.
[70] Basak, P., Dey, S., & Ghoush, P. (2020). Sulfonated Graphene-Oxide as Metal-Free Efficient Carbocatalyst for the Synthesis of 3-Methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones and Substituted Pyrazole. ChemistrySelect, 5(2), 626-636.
[71] Damghani, F. K., Kiyani, H., & Pourmousavi, S. A. (2020). Green Three-component Synthesis of Merocyanin Dyes Based on 4-Arylideneisoxazol-5(4
H)-ones.
Current Green Chemistry,
7(2), 217-225.
[73] Yan, J. J., Sun, J. T., You, Y. Z., Wu, D. C., & Hong, C. Y. (2013). Growing Hyperbranched Polymers Using Natural Sunlight. Scientific Reports, 3, 2841.
[74] Oelgemoller, M. (2016). Solar Photochemical Synthesis: From the Beginnings of Organic Photochemistry to the Solar Manufacturing of Commodity Chemicals. Chemical Reviews, 116(17), 9664-9682.
[75]
Mustafa, A. (1952). Dimerization Reactions in Sunlight.
Chemical Reviews, 51(1), 1-23.
[76] Ciamician, G., Silber, P. (1900). Chemisohe Lichtwirkungen. Berichte der Deutschen Chemischen Gesellschaft, 33(3), 2911-2913.
[77] Ciamician, G. (1912). The Photochemistry of the Future. Science, 36(926), 385-394.
[78] Jadhav, N. L., Pandit, A. B., & Pinjari, D. V. (2017). Green approach for the synthesis of chalcone (3-(4-fluorophenyl)-1-(4-methoxyphenyl) prop-2-en-1-one) using concentrated solar radiation. Solar Energy, 147, 232-239.
[79] Ghorpade, P., Gadilohar, B., Pinjari, D., Shinde, Y., & Shankarling, G. (2015). Concentrated solar radiation enhanced one pot synthesis of DES and N-Phenyl phthalimide. Solar Energy, 122, 1354-1361.
[80] Hayakawa, M., Shirota, H., Hirayama, S., Yamada, R., Aoyama, T., & Ouchi, A. (2021). Sunlight-induced C–C bond formation reaction: Radical addition of alcohols/ethers/acetals to olefins. Journal of Photochemistry & Photobiology, A: Chemistry, 413, 113263.
[81] Protti, S., & Fagnoni, M. (2009). The sunny side of chemistry: green synthesis by solar light. Photochemistry & Photobiological Sciences, 8(11), 1499-1516.
[82] Xu, J., He, L., Liang, C., Yue, X., Ouyang, Y., & Zhang, P. (2021). Multicomponent Bifunctionalization of Methyl Ketones Enabled by Heterogeneous Catalysis and Solar Photocatalysis in Water. Acs Sustainable Chemistry & Engineering, 9(40), 13663-13671.
[83] Singha, R., & Shit, P. (2020). Sunlight assisted solvent free synthesis of tert-butylperesters. Synthetic Communications, 50(17), 2698-2703.
[84] Juntrapirom, S., Tantraviwat, D., Thongsook, O., Anuchai, S., Pornsuwan, S., Channei, D., & Inceesungvorn, B. (2021). Natural sunlight driven photocatalytic coupling of primary amines over TiO2/BiOBr heterojunction. Applied Surface Science, 545, 149015.
[85] Battula, V. R., Singh, H., Kumar, S., Bala, I., Pal, S. K., & Kailasam, K. (2018). Natural Sunlight Driven Oxidative Homocoupling of Amines by a Truxene-Based Conjugated Microporous Polymer. Acs Catalysis, 8(8), 6751-6759.
[86] Shi, H., Li, J., Wang, T., Rudolpha, M., & Hashmi, A. S. K. (2022). Catalyst- and additive-free sunlight-induced autoxidation of aldehydes to carboxylic acids. Green Chemistry, 24(15), 5835-5841.
[87] Onuigbo, L., Raviola, C., Di Fonzo, A., Protti, S., & Fagnoni, M. (2018). Sunlight-Driven Synthesis of Triarylethylenes (TAEs) via Metal-Free Mizoroki–Heck-Type Coupling. European Journal of Organic Chemistry, 2018(38), 5297-5303.
[88] Gadkari, Y. U., Hatvate, N. T., & Telvekar, V. N. (2021). Solar energy as a renewable energy source for preparative-scale as well as solvent and catalyst-free Hantzsch reaction. Sustainable Chemistry and Pharmacy, 21, 100444.
[89] Gaspa, S., Valentoni, A., Mulas, G., Porcheddu, A., & De Luca, L. (2018). Metal-Free Preparation of α-H-Chlorinated Alkylaromatic Hydrocarbons by Sunlight. ChemistrySelect, 3(27), 7991-7995.
[90] Mishra, A. K., Parvari, G., Santra, S. K., Bazylevich, A., Dorfman, O., Rahamim, J., Eichen, Y., & Szpilman, A. M. (2021). Solar and Visible Light Assisted Peptide Coupling. Angewandte Chemie International Edition, 60(22), 12406-12412.
[91] Sadanand, V., Rajini, N., Rajulu, A. V., & Satyanarayana, B. (2018). Effect of sunlight on the preparation and properties of cellulose/silver nanoparticle composite films by in situ method using Ocimum sanctum leaf extract as a reducing agent. International Journal of Polymer Analysis and Characterization, 23(4), 313-320.
[92] Mathew, S., Prakash, A., & Radhakrishnan, E. K. (2018). Sunlight mediated rapid synthesis of small size range silver nanoparticles using Zingiber officinale rhizome extract and its antibacterial activity analysis. Inorganic and Nano-Metal Chemistry, 48(2), 139-145.
[93] Jung, C., Funken, K. H., & Ortner, J. (2005). PROPHIS: parabolic trough-facility for organic photochemical syntheses in sunlight. Photochemical & Photobiological Sciences, 4(5), 409-411.
[94] Ortner, J., Faust, D., Funken, K. H., Lindner, T., Schulat, J., Stojanof, C. G., & Froning, P. (1999). New developments using holographic concentration in solar photochemical reactors. Journal de Physique IV (Proceedings), 9(Pr3), 379-383.
[95] Sturzenegger, M., Winkel, L., & Guesdon, C. (2006). Solar extraction of copper: on application of concentrated sunlight in extractive metallurgy. Mineral Processing and Extractive Metallurgy, 115(1), 31-40.
[96] Gadkari, Y. U., Jadhav, N. L., Hatvate, N. T., & Telvekar, V. N. (2020). Concentrated Solar Radiation Aided Green Approach for Preparative Scale and Solvent-Free Synthesis of 3-Methyl-4-(hetero)arylmethylene Isoxazole-5(4H)-ones. ChemistrySelect, 5(39), 12320-12323.
[97] Gadkari, Y. U., Hatvate, N. T., & Telvekar, V. N. (2021). Concentrated solar radiation‑assisted one‑pot/ multicomponent synthesis of pyranopyrazole derivatives under neat condition. Research on Chemical Intermediates, 47(10), 4245-4255.
[98] Sakamoto, M., Shiratsuki, K., Uemura, N., Ishikawa, H., Yoshida, Y., Kasashima, Y., & Mino, T. (2017). Asymmetric Synthesis by Using Natural Sunlight under Absolute Achiral Conditions. Chemistry A European Journal, 23(7), 1717-1721.
[99] Dazat, R. E., Vidal, E., Lorenzetti, A. S., Garcia, C. D., Domini, C., Silva, M. F., & Gomez, F. J. V., (2022). On-Site Preparation of Natural Deep Eutectic Solvents Using Solar Energy. ChemistrySelect, 7(16), e202104362.
[100] Oelgemoller, M., Healy, N., de Oliveira, L., Jung, C., & Mattay, J. (2006). Green photochemistry: solar-chemical synthesis of Juglone with medium concentrated sunlight. Green Chemistry, 8(9), 831-834.
[101] Dondi, D., Protti, S., Albini, A., Carpio, S. M., & Fagnoni, M. (2009). Synthesis of γ-lactols, γ-lactones and 1,4-monoprotected succinaldehydes under moderately concentrated sunlight. Green Chemistry, 11(10), 1653-1659.
[102] Darzi-Daroonkala, M., & Kiyani, H. (2019). Synthesis of 1,3-diazabicyclo[3.1.0]hex-3-en-2-yl-4H-chromen-4-ones as photochromic compounds. Applied Chemistry, 14(52), 307-320. (in persian)
[103] Mosavi niaraki, S., Azimi Roshan, A., Monfared, A., & Kiyani, H. (2021). Green and three-component synthesis of 2-cyclohexylamino-2-oxo-1-arylethyl/alkyl thiophene-3-carboxylates in aqueous medium. Applied Chemistry, 16(60), 49-62. (in persian)
[104] Mirani Nezhad, S., Pourmousavi, S. A., & Nazarzadeh Zare, E. (2022). Poly(styrene-co-maleic anhydride) modified with nickel sulfate and its application in the synthesis of 2-amino-4H-chromenes. Applied Chemistry, 17(62), 115-138. (in persian)
[105] Kafi-Ahmadi, L., khademinia, S., & Esmaeili, R. (2021). One pot three component synthesis of 2-amino-4H-chromene derivatives under microwave irradiation using Sr2As2O7 nanocatalyst. Applied Chemistry, 16(60), 153-166. (in persian)
[106] Alizade-Majd, M., Sarvary, A., & Nahali, M. (2020). Synthesis of 3-aminoimidazo[1,2-a]pyridines via three-component reaction in the 2,2,2-trifluoroethanol-water two-phase systems. Applied Chemistry, 15(55), 69-80. (in persian)
[107] González, C. G., Mustafa, N. R., Wilson, E. G., Verpoorte, R., & Choi, Y. H. (2018). Application of natural deep eutectic solvents for the “green”extraction of vanillin from vanilla pods. Flavour and Fragrance Journal, 33(1), 91-96.
[108] Shapiro, N., & Vigalok, A. (2008). Highly Efficient Organic Reactions “on Water”, “in Water”, and Both. Angewandte Chemie International Editionm, 47(15), 2849-2852.