Removal of nickel ions from aqueous solutions using natural zeolite; kinetic, equilibrium and thermodynamic studies

Abstract

The aim of the present study is to investigate the removal of nickel ions from aqueous solutions using natural zeolite. Batch experimental studies were conducted to evaluate by changing relevant parameters such as initial pH of solution, dosage of adsorbent, contact time, initial nickel ion concentration and temperature. The experimental isotherm data are analyzed using Langmuir and Freundlich equations. The Langmuir model fits the equilibrium data better than the Freundlich model. According to the Langmuir equation, the maximum uptake for nickel ions is 18.09 (mg/g). Pseudo-first-order and pseudo-second-order models are used to represent the kinetics of the process. The results indicate that the pseudo-second-order model is the one that best describes the kinetics of the adsorption of metal ions. The calculated thermodynamic parameters (ΔG°, ΔH°, and ΔS°) show that the adsorption process is feasible, spontaneous and endothermic at 20-50°C. Based on the experimental results, it can be concluded that natural zeolite has the potential of application as an efficient adsorbent for the removal of heavy metals from aqueous solutions.

Keywords


[1] S.H .Lin, R.S. Juang, J. Hazard. Mater. B, 92 (2002) 315.
[2] R.P. Beliles, The lesser metals, in: F.W. Oehme (Ed.), Toxicity of Heavy Metals in the Environment. Marcel Dekker, New York (1978).
[3] N. Akhtar, J. Iqbal, M. Iqbal, J. Hazard. Mater. B, 108 (2004) 85.
[4] U. Farooq, J.A. Kozinski, M.A. Khan, M. Athar, Bioresour. Technol, 101 (2010) 5043.
[5] T.A. Kurniawan, G.Y.S. Chan, W.H. Lo, S. Babel, Sci. Total Environ, 366 (2006) 409.
[6] S. Malamis, E. Katsou, J. Hazard. Mater, 252 (2013) 428.
[7] S. Wang, Y. Peng, Chem. Eng. J, 156 (2010) 11.
[8] L. Roshanfekr Rad, A. Momeni, B. Farshi Ghazani, M. Irani, M. Mahmoudi, B. Noghreh, Chem. Eng, J.256 (2014) 119.
[9] V. Coman, B. Robotin, P. Ilea, Resour Conserv and Recy, 73 (2013) 229.
[10] M. Torab-Mostaedi, H. Ghassabzadeh, M. Ghannadi-Maragheh, S.J. Ahmadi, H. Taheri, Braz. J. Chem. Eng. 27 (2010) 299.
[11] S.C. Oruh, O.N. Ergun, Environ. Prog. Sustain. Energy. 28 (2009) 162.
[12] A. Ahmadi, Sh. Heidarzadeh, A. Mokhtari, E. Darezereshki, H. Asadi Harounia, J. Geochem. Explor. 147 (2014) 151.
[13] A. Çelekli, H. Bozkurt,. Desalination. 275 (2011) 141.
[14] V.C. Srivastava, I.D. Mall, I.M. Mishra, Chem. Eng. Process. 48 (2009) 370.
[15] S. Demim, N. Drouiche, A. Aouabed, T. Benayad, M. Couderchet, S. Semsari, J. Ind. Eng. Chem. 20 (2014) 512.
 
[16] J.W. Patterson, Industrial Wastewater Treatment Technology Butterworth Publishers, Stoneham (1985).
[17] M. Amini, H. Younesi, N. Bahramifar. Colloids Surf. A. 337 (2009) 67.
[18] S. Hao, Y. Zhong, F. Pepe, W. Zhu, Chem. Eng. J. 189 (2012) 160.
[19] MASD. Barros, E.A. Silva, P.A. Arroyo, CRG. Tavares, R.M. Schneider, M. Suszek, , E.F, Sousa-Aguiar, Chem. Eng. Sci. 59 (2004) 5959.
[20] A. Khosravi, M. Esmhosseini, S.  Khezri, M. Habibimehr, Journal of Applied chemistry. 20 (2011) 61.
[21] D. Leppert, Min. Eng, 42 (1990) 604.
[22] C. Haidouti, Sci. Total Environ. 208 (1997) 105.
[23] M.I. Panayotowa, Waste Manage, 23 (2003) 135.
[24] E. Erdem, N. Karapinar, R.  Donat, J. Colloid Interface. Sci, 280 (2004) 309.
[25] H. Merrikhpour, M. Jalali, Clean Techn. Environ. Policy. 15 (2013) 303.
[26] S. Wang, Y. Peng, Chem. Eng. J, 156 (2010) 11.
[27] M. Akgül, A. Karabakan, O. Acar, Y. Yürüm, Micropor. Mesopor. Mater, 94 (2006) 99.
[28] A. Kaya, A.H. Ören, J. Hazard. Mater. 125 (2005) 183.
[29] E. Malkoc, J. Hazard. Mater, 137 (2006) 899.
[30] A. Khosravi, M. Esmhosseini, S. Khezri, Res Chem Intermed. 40 (2014) 2905.
[31] A. Khosravi, M. Esmhosseini, J.  Jalili, S. Khezri, J. Incl. Phenom. Macrocycl. Chem, 74 (2012) 383.
[32] D. Belark, F. kord mostafapour, A. joghataei, Journal of Applied chemistry. 38 (2016) 123.
[33] H. Huo, H. Su, T.  Tan, Chem. Eng. J. 150 (2009) 139.
[34] I. Langmuir, J. Am. Chem. Soc. 40 (1918) 1361.
[35] H.M.F. Freundlich, Z. für Phys. Chem. 57 (1906) 385.
[36] S. Lagergren, K Sven Vetenskapsakad Handl, 24 (1989) 1.
[37] M.J. Zamzow, J.E. Murphy, Sep. Sci. Technol, 27 (1992) 1969.
[38] S.K. Ouki, M. Kavannagh, Waste Manag. Res. 15 (1997) 383.
[39] E. Álvarez-Ayuso, A. García-Sánchez, X. Querol, Water Res. 37 (2003) 4855.
[40] O. Oter, H. Akcay, Water Environ. Res. 79 (2007) 329.
[41] M. Sprynskyy, B. Buszewski, A.P. Terzyk, J. Namiesnik, J. Colloid Interface Sci, 304 (2006) 21.
[42] E. Álvarez-Ayuso, A. García-Sánchez, Clays Clay Miner. 51 (2003) 475.
[43] M. Torab-Mostaedi, H. Ghassabzadeh, M.  Ghannadi, S.J. Ahmadi, H. Taheri, Braz. J. Chem. Eng. 27 (2010) 299.
[44] O. Abollino, A. Giacomino, M. Malandrino, E. Mentasti, Appl. Clay Sci. 38 (2008) 227.
[45] A. Kapoor, T. Viraraghavan, D. Roy, D.R. Cullimore, Bioresour. Technol. 70 (1999) 95.
[46] M. Mohammadi, A. Ghaemi, M. Torab-Mostaedi, M. Asadollahzadeh, A. Hemmati, Desalin. Water Treat, 53 (2015) 149.
[47] N. Chaouch, M.R. Ouahrani, S. Chaouch, N. Gherraf, Desalin. Water Treat, 51 (2013) 2087
[48] Y. S. Ho, G. McKay, Process Biochem, 34 (1889) 451.