[1] Van Nieuwenhuysen, J. P., D'Hoore, W., Carvalho, J., & Qvist, V. (2003). Long-term evaluation of extensive restorations in permanent teeth. Journal of dentistry, 31(6), 395-405.
[2] Zabrovsky, A., Beyth, N., Pietrokovski, Y., Ben-Gal, G., & Houri-Haddad, Y. (2017). Biocompatibility and functionality of dental restorative materials. In Biocompatibility of Dental Biomaterials (pp. 63-75). Woodhead Publishing..
[3] Dorozhkin, S. V. (2013). Calcium orthophosphates in dentistry. Journal of Materials Science: Materials in Medicine, 24(6), 1335-1363.
[4] Kulhan, T., Kamboj, A., Gupta, N. K., & Somani, N. (2022). Fabrication methods of glass fibre composites—a review. Functional Composites and Structures, 4(2), 022001.
[5] Okulus, Z., Héberger, K., & Voelkel, A. (2014). Sorption, solubility, and mass changes of hydroxyapatite‐containing composites in artificial saliva, food simulating solutions, tea, and coffee. Journal of Applied Polymer Science, 131(3).
[6] Holand, W., & Beall, G. H. (2019). Glass-ceramic technology. John Wiley & Sons.
[7] Chatzistavrou, X., Esteve, D., Hatzistavrou, E., Kontonasaki, E., Paraskevopoulos, K. M., & Boccaccini, A. R. (2010). Sol–gel based fabrication of novel glass-ceramics and composites for dental applications. Materials Science and Engineering: C, 30(5), 730-739.
[8] Hench, L. L., Xynos, I. D., & Polak, J. M. (2004). Bioactive glasses for in situ tissue regeneration. Journal of Biomaterials Science, Polymer Edition, 15(4), 543-562.
[9] Baino, F., Hamzehlou, S., & Kargozar, S. (2018). Bioactive glasses: where are we and where are we going?. Journal of functional biomaterials, 9(1), 25.
[10] Lemos, E. M., Patrício, P. S., & Pereira, M. M. (2016). 3D nanocomposite chitosan/bioactive glass scaffolds obtained using two different routes: an evaluation of the porous structure and mechanical properties. Química Nova, 39, 462-466.
[11] Mota, J., Yu, N., Caridade, S. G., Luz, G. M., Gomes, M. E., Reis, R. L., ... & Mano, J. F. (2012). Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta biomaterialia, 8(11), 4173-4180.
[12] Madhi, A., & Shirkavand Hadavand, B. (2022). Chemical treatment of cotton fabric by eco-friendly carbon quantum dots-chitosan nanocomposites. Applied Chemistry, 17(63), 55-66 (in persian)
[13] Molaei, Z., Hamzehloueian, M., Ghasemi, K., & Soleimanian, F. (2019). Preparation of magnetic chitosan-graphene oxide-MnFe2O4 nanocomposite and its application for removal of naphthol blue black (NBB). Applied Chemistry, 14(52), 103-118. (in persian)
[14] Mansouri, M., Razmeh, H., Bayati, B., & Setarehshenas, N. (2020). Kinetics and thermodynamic studies of asphaltene adsorption onto Zeolite ZSM-5 nanoparticles. Applied Chemistry, 15(56), 267-284. (in persian)
[15] Mozayeni, A., & Mahmoudi, J. (2018). Synthesis and characterization of the composite of TiO2/Zeolite by sol-gel method and evaluation of its photocatalytic activity in the degradation of azo dyes from aqueous solutions. Applied Chemistry, 13(48), 325-338. (in persian)
[16] Lehman, S. E., & Larsen, S. C. (2014). Zeolite and mesoporous silica nanomaterials: greener syntheses, environmental applications and biological toxicity. Environmental Science: Nano, 1(3), 200-213.
[17] Iqbal, N., Kadir, M. R. A., Mahmood, N. H. B., Yusoff, M. F. M., Siddique, J. A., Salim, N., ... & Kamarul, T. (2014). Microwave synthesis, characterization, bioactivity and in vitro biocompatibility of zeolite–hydroxyapatite (Zeo–HA) composite for bone tissue engineering applications. Ceramics International, 40(10), 16091-16097.
[18] Vukajlovic, D., Parker, J., Bretcanu, O., & Novakovic, K. (2019). Chitosan based polymer/bioglass composites for tissue engineering applications. Materials Science and Engineering: C, 96, 955-967.
[19] Posada-Carvajal, J. S., & Atehortúa-Soto, D. L. (2016). Fabrication of chitosan/bioactive glass composite scaffolds for medical applications. Revista Facultad de Ingeniería Universidad de Antioquia, (80), 38-47.
[20] Miola, M., Verné, E., Ciraldo, F. E., Cordero-Arias, L., & Boccaccini, A. R. (2015). Electrophoretic deposition of chitosan/45S5 bioactive glass composite coatings doped with Zn and Sr. Frontiers in bioengineering and biotechnology, 3, 159.
[21] Taaca, K. L. M., & Vasquez Jr, M. R. (2017). Fabrication of Ag-exchanged zeolite/chitosan composites and effects of plasma treatment. Microporous and Mesoporous Materials, 241, 383-391.
[22] Yu, L., Gong, J., Zeng, C., & Zhang, L. (2013). Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities. Materials Science and Engineering: C, 33(7), 3652-3660.
[23] Dias, L. L., Mansur, H. S., Donnici, C. L., & Pereira, M. M. (2011). Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes. Biomatter, 1(1), 114-119.
[24] Gerhardt, L. C., & Boccaccini, A. R. (2010). Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials, 3(7), 3867-3910.
[25] Pourhaghgouy, M., Zamanian, A., Shahrezaee, M., & Masouleh, M. P. (2016). Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. Materials Science and Engineering: C, 58, 180-186.
[26] Moghaddam, N., Oroujzadeh, N., & Salehirad, A. (2022). Fabrication of bioactive glass/chitosan/zeolite bio-nanocomposite: Influence of synthetic route on structural and mechanical properties. Materials Chemistry and Physics, 278, 125708.
[27] Li, B., Shan, C. L., Zhou, Q., Fang, Y., Wang, Y. L., Xu, F., ... & Sun, G. C. (2013). Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Marine drugs, 11(5), 1534-1552.
[28] Li, W., Ding, Y., Yu, S., Yao, Q., & Boccaccini, A. R. (2015). Multifunctional chitosan-45S5 bioactive glass-poly (3-hydroxybutyrate-co-3-hydroxyvalerate) microsphere composite membranes for guided tissue/bone regeneration. ACS applied materials & interfaces, 7(37), 20845-20854.
[29] Kildeeva, N. R., Perminov, P. A., Vladimirov, L. V., Novikov, V. V., & Mikhailov, S. N. (2009). About mechanism of chitosan cross-linking with glutaraldehyde. Russian journal of bioorganic chemistry, 35, 360-369.
[30] Morsy, R. A., Beherei, H., Ellithy, M., Tarek, H. E., & Mabrouk, M. (2019). The odontogenic performance of human dental pulp stem cell in 3-dimensional chitosan and nano-bioactive glass-based scaffold material with different pores size. Journal of The Arab Society for Medical Research, 14(2), 82.
[31] Lim, S. H., & Hudson, S. M. (2004). Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydrate research, 339(2), 313-319.
[32] Bakatula, E. N., Mosai, A. K., & Tutu, H. (2015). Removal of uranium from aqueous solutions using ammonium-modified zeolite. South African Journal of Chemistry, 68, 165-171.
[33] Mozgawa, W., Krol, M., & Barczyk, K. (2011). FT-IR studies of zeolites from different structural groups. Chemik, 65(7), 667-674.
[34] Islam, N., Dmour, I., & Taha, M. O. (2019). Degradability of chitosan micro/nanoparticles for pulmonary drug delivery. Heliyon, 5(5), e01684.
[35] Kumar, R. S., Ravikumar, N., Kavitha, S., Mahalaxmi, S., Jayasree, R., Kumar, T. S., & Haneesh, M. (2017). Nanochitosan modified glass ionomer cement with enhanced mechanical properties and fluoride release. International journal of biological macromolecules, 104, 1860-1865.
[36] Schickle, K., Zurlinden, K., Bergmann, C., Lindner, M., Kirsten, A., Laub, M., ... & Fischer, H. (2011). Synthesis of novel tricalcium phosphate-bioactive glass composite and functionalization with rhBMP-2. Journal of Materials Science: Materials in Medicine, 22, 763-771.
[37] Ramakrishna, C., Saini, B. K., Racharla, K., Gujarathi, S., Sridara, C. S., Gupta, A., ... & Rao, P. V. L. (2016). Rapid and complete degradation of sulfur mustard adsorbed on M/zeolite-13X supported (M= 5 wt% Mn, Fe, Co) metal oxide catalysts with ozone. RSC advances, 6(93), 90720-90731.
[38] Sowunmi, A. R., Folayan, C. O., Anafi, F. O., Ajayi, O. A., Omisanya, N. O., Obada, D. O., & Dodoo-Arhin, D. (2018). Dataset on the comparison of synthesized and commercial zeolites for potential solar adsorption refrigerating system. Data in brief, 20, 90-95.
[39] Faqhiri, H., Hannula, M., Kellomäki, M., Calejo, M. T., & Massera, J. (2019). Effect of melt-derived bioactive glass particles on the properties of chitosan scaffolds. Journal of Functional Biomaterials, 10(3), 38.
[40] Ekworapoj, P., Promajaree, P., Boonyarit, K., & Sritulanon, T. (2014). Antibacterial and mechanical properties of silver zeolite blended dental composite. Dental Materials, (30), e132.
[41] Vukajlovic, D., Parker, J., Bretcanu, O., & Novakovic, K. (2019). Chitosan based polymer/bioglass composites for tissue engineering applications. Materials Science and Engineering: C, 96, 955-967.
[42] Kuttappan, S., Mathew, D., & Nair, M. B. (2016). Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering-A mini review. International journal of biological macromolecules, 93, 1390-1401.
[43] Yang, J., Long, T., He, N. F., Guo, Y. P., Zhu, Z. A., & Ke, Q. F. (2014). Fabrication of a chitosan/bioglass three-dimensional porous scaffold for bone tissue engineering applications. Journal of materials chemistry B, 2(38), 6611-6618.
[44] Iqbal, N., Kadir, M. A., Iqbal, S., Abd Razak, S. I., Rafique, M. S., Bakhsheshi-Rad, H. R., ... & Abbas, A. A. (2016). Nano-hydroxyapatite reinforced zeolite ZSM composites: A comprehensive study on the structural and in vitro biological properties. Ceramics International, 42(6), 7175-7182.
[45] A Chandrasekar, A., Sagadevan, S., & Dakshnamoorthy, A. (2013). Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. Int. J. Phys. Sci, 8(32), 1639-1645.
[46] Shi, C., Hou, X., Zhao, D., Wang, H., Guo, R., & Zhou, Y. (2022). Preparation of the bioglass/chitosan-alginate composite scaffolds with high bioactivity and mechanical properties as bone graft materials. Journal of the Mechanical Behavior of Biomedical Materials, 126, 105062.
[47] Manafi, S. A., Yazdani, B., Rahimiopour, M. R., Sadrnezhaad, S. K., Amin, M. H., & Razavi, M. (2008). Synthesis of nano-hydroxyapatite under a sonochemical/hydrothermal condition. Biomedical Materials, 3(2), 025002.