[1] Darzinezhad, K., Amini, M. M., Mohajerani, E., Fathollahi, M.R., Janghouri, M., Notash, B., Rostami, A. (2021). Architecture of New Rare Earth Metal Complexes as Precursors for the Fabrication of a New Class of OLEDs with Blue Shift Fluorescence. Zeitschrift für anorganische und allgemeine Chemie, 647(5), 456-462.
[2] Singh, D., Nishal, V., Bhagwan, S., Saini, R. K., Singh, I. (2018). Electroluminescent materials: Metal complexes of 8-hydroxyquinoline - A review. Materials & Design, 156, 215-228.
[3] Wang, T.T., Zeng, G.C., Zeng, H.P., Liu, P.-Y., Wang, R.X., Zhang, Z.J., Xiong, Y.L. (2009). Synthesis of light-emmting materials bis-[2′-2″-(9H-fluoren-2-yl)-vinyl-8-hydroxyquinoline] zinc(II) and bis-[2′-4″-(4,5-diphenyl-1H-imidazol-2-yl)styryl-8-hydroxyquinoline] zinc(II). Tetrahedron, 65(32), 6325-6329.
[4] Yang, X., Xu, X., Zhou, G. (2015). Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. Journal of Materials Chemistry C, 3(5), 913-944.
[5] Miao, Y., Tao, P., Wang, K., Li, H., Zhao, B., Gao, L., Wang, H., Xu, B., Zhao, Q. (2017). Highly Efficient Red and White Organic Light-Emitting Diodes with External Quantum Efficiency beyond 20% by Employing Pyridylimidazole-Based Metallophosphors. ACS applied materials & interfaces, 9(43), 37873-37882.
[6] Shen, Z., Burrows, P. E., Bulović, V., Forrest, S. R., Thompson, M. E. (1997). Three-Color, Tunable, Organic Light-Emitting Devices. Science, 276(5321), 2009-2011.
[7] D'Andrade, B. W., Forrest, S. R. (2004). White Organic Light-Emitting Devices for Solid-State Lighting. Advanced Materials, 16(18), 1585-1595.
[8] Darzinezhad, K., Amini, M. M., Janghouri, M., Mohajerani, E., Fathollahi, M.-R., Jamshidi, Z., Janiak, C. (2020). Introducing Bluish-Green Light-Emitting Diodes (OLEDs) and Tuning Their Color Intensity by Uranium Complexes: Synthesis, Characterization, and Photoluminescence Studies of 8-Hydroxyquinoline Complexes of Uranium. Inorganic Chemistry, 59(23), 17028-17037.
[9] Kim, S., Lee, J. I., Yang, J., Shin, I.S., Earmme, T., Kang, M. S. (2020). A Guide for Realizing Efficient Polymer Light-Emitting Electrochemical Cells in a Single Active Layer Device Structure. ChemElectroChem, 7(1), 260-265.
[10] Meier, S. B., Tordera, D., Pertegás, A., Roldán-Carmona, C., Ortí, E., Bolink, H. J. (2014). Light-emitting electrochemical cells: recent progress and future prospects. Materials Today, 17(5), 217-223.
[11] Matsuki, K., Pu, J., Takenobu, T. (2020). Recent Progress on Light-Emitting Electrochemical Cells with Nonpolymeric Materials. Advanced Functional Materials, 30(33), 1908641.
[12] Kwon, D.K., Myoung, J.M. (2020). Ion gel-based flexible electrochemiluminescence full-color display with improved sky-blue emission using a mixed-metal chelate system. Chemical Engineering Journal, 379, 122347.
[13] Meng, X., Wang, P., Bai, R., He, L. (2020). Blue-green-emitting cationic iridium complexes with oxadiazole-type counter-anions and their use for highly efficient solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 8(18), 6236-6244.
[14] Hamada, Y., Sano, T., Shibata, K., Kazuhiko Kuroki, K. K. (1995). Influence of the Emission Site on the Running Durability of Organic Electroluminescent Devices. Japanese Journal of Applied Physics, 34(7A), L824.
[15] Zeng, W. F., Chen, Y. S., Chiang, M. Y., Chern, S. S., Cheng, C. P. (2002). Preparation and structures of complexes of titanium(IV) and 8-hydroxyquinoline: TiQ2(Opri)2 and [TiQ2(μ-O)]4·6H2O. Polyhedron, 21(11), 1081-1087.
[16] Qin, Y., Pagba, C., Piotrowiak, P., Jäkle, F. (2004). Luminescent Organoboron Quinolate Polymers. Journal of the American Chemical Society, 126(22), 7015-7018.
[17] Brinkmann, M., Fite, B., Pratontep, S., Chaumont, C. (2004). Structure and Spectroscopic Properties of the Crystalline Structures Containing Meridional and Facial Isomers of Tris(8-hydroxyquinoline) Gallium(III). Chemistry of Materials, 16(23), 4627-4633.
[18] Burrows, P. E., Sapochak, L. S., McCarty, D. M., Forrest, S. R., Thompson, M. E. (1994). Metal ion dependent luminescence effects in metal tris‐quinolate organic heterojunction light emitting devices. Applied Physics Letters, 64(20), 2718-2720.
[19] Burrows, P. E., Shen, Z., Bulovic, V., McCarty, D. M., Forrest, S. R., Cronin, J. A., Thompson, M. E. (1996). Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices. Journal of Applied Physics, 79(10), 7991-8006.
[20] Sapochak, L. S., Benincasa, F. E., Schofield, R. S., Baker, J. L., Riccio, K. K. C., Fogarty, D., Kohlmann, H., Ferris, K. F., Burrows, P. E. (2002). Electroluminescent Zinc(II) Bis(8-hydroxyquinoline): Structural Effects on Electronic States and Device Performance. Journal of the American Chemical Society, 124(21), 6119-6125.
[21] Shavaleev, N. M., Adams, H., Best, J., Edge, R., Navaratnam, S., Weinstein, J. A. (2006). Deep-Red Luminescence and Efficient Singlet Oxygen Generation by Cyclometalated Platinum(II) Complexes with 8-Hydroxyquinolines and Quinoline-8-thiol. Inorganic Chemistry, 45(23), 9410-9415.
[22] Kolb, A., Bissinger, P., Schmidbauer, H. (1993). Synthesis of arylbis[(triorganophosphine)gold(I)]oxonium tetrafluoroborates [RO(AuPR'3)2]+BF4-. Crystal structure of (8-quinolinyl)bis[(triphenylphosphine)gold(I)]oxonium tetrafluoroborate. Inorganic Chemistry, 32(23), 5132-5135.
[23] Fazaeli, Y., Amini, M. M., Najafi, E., Mohajerani, E., Janghouri, M., Jalilian, A., Ng, S. W. (2012). Synthesis and Characterization of 8-hydroxyquinoline Complexes of Tin(IV) and Their Application in Organic Light Emitting Diode. Journal of Fluorescence, 22(5), 1263-1270.
[24] Najafi, E., Amini, M. M., Khavasi, H. R., Ng, S. W. (2014). The effect of substituents of the 1,10-phenanthroline ligand on the nature of diorgnotin(IV) complexes formation. Journal of Organometallic Chemistry, 749, 370-378.
[25] Hodaie, M., Sadjadi, M. S., Amini, M. M., Najafi, E., Ng, S. W. (2016). Sonochemical Synthesis of a Nanocrystalline Tin(IV) Complex based on a Bulky Anthracene Carboxylate Ligand: Spectroscopic and Photophysical Properties. Journal of Inorganic and Organometallic Polymers and Materials, 26(3), 500-511.
[26] Najafi, E., Kheirkhahi, M., Amini, M. M., Ng, S. W. (2013). Preparation of SnO2 Nanoparticles from a New Tin(IV) Complex: Spectroscopic and Photoluminescence Studies. Journal of Inorganic and Organometallic Polymers and Materials, 23(4), 1015-1022.
[27] Najafi, E., Amini, M. M., Janghouri, M., Mohajerani, E., Ng, S. W. (2014). Effects of the π-conjugation length of bipyridyl ligand on the photophysical properties of binuclear organotin(IV) complexes: Synthesis and characterization of dimethyltin(IV) complexes with bipyridyl. Inorganica Chimica Acta, 415, 52-60.
[28] Najafi, E., Amini, M. M., Mohajerani, E., Janghouri, M., Razavi, H., Khavasi, H. (2013). Fabrication of an organic light-emitting diode (OLED) from a two-dimensional lead(II) coordination polymer. Inorganica Chimica Acta, 399, 119-125.
[29] Janghouri, M., Mohajerani, E., Amini, M. M., Najafi, E., Hosseini, H. (2013). Yellow–Orange Electroluminescence of Novel Tin Complexes. Journal of Electronic Materials, 42(10), 2915-2925.
[30] Janghouri, M., Mohajerani, E., Amini, M. M., Najafi, E. (2014). Red organic light emitting device based on TPP and a new host material. Applied Physics A, 114(2), 445-451.
[31] Helfrich, W., Schneider, W. G. (1965). Recombination Radiation in Anthracene Crystals. Physical Review Letters, 14(7), 229-231.
[32] Helfrich, W., Schneider, W. G. (1966). Transients of Volume‐Controlled Current and of Recombination Radiation in Anthracene. The Journal of Chemical Physics, 44(8), 2902-2909.
[33] Werner, T. C., Hercules, D. M. (1969). Fluorescence of 9-anthroic acid and its esters. Environmental effects on excited-state behavior. The Journal of Physical Chemistry, 73(6), 2005-2011.
[34] Momiji, I., Yoza, C., Matsui, K. (2000). Fluorescence Spectra of 9-Anthracenecarboxylic Acid in Heterogeneous Environments. The Journal of Physical Chemistry B, 104(7), 1552-1555.
[35] Satoshi, S., Tsuneo, F., Nobuyuki, Y., Shigeru, K., Toshiko, I. (1978). Absorption and Fluorescence Spectra of Anthracenecarboxylic Acids. I. 9-Anthroic Acid and Formation of Excimer. Bulletin of the Chemical Society of Japan, 51(9), 2460-2466.
[36] Bazilevskaya, N., Cherkasov, A. (1965). Excited Dimers of Anthracene Derivatives. I. Optics and Spectroscopy, 18, 30.
[37] Ghoneim, N., Scherrer, D., Suppan, P. (1993). Dual luminescence, structure and excimers of 9-anthracene carboxylic acid. Journal of Luminescence, 55(5), 271-275.
[38] Frömmel, J., Wolff, T. (1998). Influence of Ionene Polyelectrolytes on Rheology and Photorheology of Aqueous Micellar Cetyltrimethylammonium Bromide Containing 9-Anthracene Carboxylic Acid. Journal of Colloid And Interface Science, 201(1), 86-92.
[39] Cohen, M. D., Ludmer, Z., Yakhot, V. (1975). The fluorescence properties of crystalline anthracenes and their dependence on the crystal structures. physica status solidi (b), 67(1), 51-61.
[40] Chen, C.L., Lin, M.-H., Hong, J.L. (2005). Hydrogen-bond interactions and photoluminescence properties of the miscible blends of 9-anthracenecarboxylic acid and polycyanate crosslinked resin. Synthetic Metals, 148(1), 61-64.
[41] Tang, C. W., VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51(12), 913-915.
[42] Knox, J. E., Halls, M. D., Hratchian, H. P., Bernhard Schlegel, H. (2006). Chemical failure modes of AlQ3-based OLEDs: AlQ3 hydrolysis. Physical Chemistry Chemical Physics, 8(12), 1371-1377.
[43] Brinkmann, M., Gadret, G., Muccini, M., Taliani, C., Masciocchi, N., Sironi, A. (2000). Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III). Journal of the American Chemical Society, 122(21), 5147-5157.
[44] Perrin, D., Armanego, W. (1980). Purification of Laboratory Chemicals, 2nd edn., Pergoman. New York.
[45] Sheldrick, G. (1997). Program for crystal structure solution and refinement. SHELXS-97 and SHELXL-97.
[46] Wang, J.J., Liu, C.S., Hu, T.L., Chang, Z., Li, C.Y., Yan, L.F., Chen, P.Q., Bu, X.H., Wu, Q., Zhao, L.J., Wang, Z., Zhang, X.Z. (2008). Zinc(ii) coordination architectures with two bulky anthracene-based carboxylic ligands: crystal structures and luminescent properties. CrystEngComm, 10(6), 681-692.