[1] Dhakal, N., Salinas-Rodriguez, S. G., Hamdani, J., Abushaban, A., Sawalha, H., Schippers, J. C., & Kennedy, M. D. (2022). Is desalination a solution to freshwater scarcity in developing countries? Membranes, 12(4), 381.
[2 Fayyaz, S., Masjedi, S. K., Kazemi, A., Khaki, E., Moeinaddini, M., & Olsen, S. I. (2023). Life cycle assessment of reverse osmosis for high-salinity seawater desalination process: Potable and industrial water production. Journal of Cleaner Production, 382, 135299.
[3 Ahdab, Y. D., & Lienhard, J. H. (2021). Desalination of brackish groundwater to improve water quality and water supply. In Global Groundwater (pp. 559-575).
[4] Feria-Díaz, J. J., Correa-Mahecha, F., López-Méndez, M. C., Rodríguez-Miranda, J. P., & Barrera-Rojas, J. (2021). Recent desalination technologies by hybridization and integration with reverse osmosis: A review. Water, 13(10), 1369.
[5] Rezakazemi, M., Khajeh, A., & Mesbah, M. (2018). Membrane filtration of wastewater from gas and oil production. Environmental Chemistry Letters, 16, 367-388.
[6] Rezakazemi, M., Dashti, A., Riasat Harami, H., & Hajilari, N. (2018). Fouling-resistant membranes for water reuse. Environmental Chemistry Letters, 16, 715-763.
[7] Rezakazemi, M. (2018). CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system. Desalination, 443, 323-332.
[8] Tofighy, M. A., & Mohammadi, T. (2021). Membrane Fouling in Desalination. Sustainable Materials and Systems for Water Desalination, 39-52.
[9] Rezaei, L., Dehghani, M., Hassani, A. H., & Alipour, V. (2020). Seawater reverse osmosis membrane fouling causes in a full scale desalination plant; through the analysis of environmental issues: raw water quality. Environmental Health Engineering and Management Journal, 7(2), 119-126.
[10] Pearson, J. L., Michael, P. R., Ghaffour, N., & Missimer, T. M. (2021). Economics and energy consumption of brackish water reverse osmosis desalination: innovations and impacts of feedwater quality. Membranes, 11(8), 616.
[11] Panagopoulos, A., & Haralambous, K. J. (2020). Environmental impacts of desalination and brine treatment-Challenges and mitigation measures. Marine Pollution Bulletin, 161, 111773.
[12] Anders, C. R., SantosFernandes, C., da Silva Dias, N., da Silva Gomes, J. W., de Souza Melo, M. R., de Souza, B. G. A., ... & de Sousa Junior, F. S. (2020). Environmental impacts of reject brine disposal from desalination plants. Desalination and Water Treatment, 181, 17-26.
[13] Al-Faifi, H., Al-Omran, A. M., Nadeem, M., El-Eter, A., Khater, H. A., & El-Maghraby, S. E. (2010). Soil deterioration as influenced by land disposal of reject brine from Salbukh water desalination plant at Riyadh, Saudi Arabia. Desalination, 250(2), 479-484.
[14] Rioyo, J., Aravinthan, V., Bundschuh, J., & Lynch, M. (2017). A review of strategies for RO brine minimization in inland desalination plants. Desalination and Water Treatment, 90, 110-123.
[15] Gude, V. G. (2016). Desalination and sustainability–an appraisal and current perspective. Water research, 89, 87-106.
[16] De Buren, L., & Sharbat, A. (2015). Inland Desalination and Brine Management: Salt Recovery and Beneficial Uses of Brine, In World Environmental and Water Resources Congress 2015 (pp. 1219-1230).
[17] Panagopoulos, A., & Haralambous, K. J. (2020). Minimal Liquid Discharge (MLD) and Zero Liquid Discharge (ZLD) strategies for wastewater management and resource recovery–Analysis, challenges and prospects. Journal of Environmental Chemical Engineering, 8(5), 104418.
[18] Semblante, G. U., Lee, J. Z., Lee, L. Y., Ong, S. L., & Ng, H. Y. (2018). Brine pre-treatment technologies for zero liquid discharge systems. Desalination, 441, 96-111.
[19] Giwa, A., Dufour, V., Al Marzooqi, F., Al Kaabi, M., & Hasan, S. W. (2017). Brine management methods: Recent innovations and current status. Desalination, 407, 1-23.
[20] Cipolletta, G., Lancioni, N., Akyol, Ç, Eusebi, A. L., & Fatone, F. (2021). Brine treatment technologies towards minimum/zero liquid discharge and resource recovery: State of the art and techno-economic assessment. Journal of Environmental Management, 300, 113681.
[21] Garcia-Segura, S., Eiband, M. M. S., de Melo, J. V., & Martínez-Huitle, C. A. (2017). Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801, 267-299.
[22] Hakizimana, J. N., Gourich, B., Vial, C., Drogui, P., Oumani, A., Naja, J., & Hilali, L. (2016). Assessment of hardness, microorganism and organic matter removal from seawater by electrocoagulation as a pretreatment of desalination by reverse osmosis. Desalination, 393, 90-101.
[23] Almukdad, A., Hafiz, M., Yasir, A. T., Alfahel, R., & Hawari, A. H. (2021). Unlocking the application potential of electrocoagulation process through hybrid processes. Journal of Water Process Engineering, 40, 101956.
[24] Kavitha, J., Rajalakshmi, M., Phani, A. R., & Padaki, M. (2019). Pretreatment processes for seawater reverse osmosis desalination systems-A review. Journal of Water Process Engineering, 32, 100926.
[25] Berkani, I., Belkacem, M., Trari, M., Lapicque, F., & Bensadok, K. (2019). Assessment of electrocoagulation based on nitrate removal, for treating and recycling the Saharan groundwater desalination reverse osmosis concentrate for a sustainable management of Albien resource. Journal of Environmental Chemical Engineering, 7(2), 102951.
[26] Ashraf, S. N., Rajapakse, J., Dawes, L. A., & Millar, G. J. (2019). Electrocoagulation for the purification of highly concentrated brine produced from reverse osmosis desalination of coal seam gas associated water. Journal of Water Process Engineering, 28, 300-310.
[27] Sefatjoo, P., Moghaddam, M. R. A., & Mehrabadi, A. R. (2020). Evaluating electrocoagulation pretreatment prior to reverse osmosis system for simultaneous scaling and colloidal fouling mitigation: Application of RSM in performance and cost optimization. Journal of Water Process Engineering, 35, 101201.
[28] Mousazadeh, M., Naghdali, Z., Al-Qodah, Z., Alizadeh, S. M., Niaragh, E. K., Malekmohammadi, S. & Emamjomeh, M. M. (2021). A systematic diagnosis of state of the art in the use of electrocoagulation as a sustainable technology for pollutant treatment: An updated review. Sustainable Energy Technologies and Assessments, 47, 101353.
[29] Bazrafshan, E., Mohammadi, L., Ansari-Moghaddam, A., & Mahvi, A. H. (2015). Heavy metals removal from aqueous environments by electrocoagulation process–a systematic review. Journal of environmental health science and engineering, 13, 1-16.
[30] Mazarji, M., Esmaili, H., Bidhendi, G. N., Mahmoodi, N. M., Minkina, T., Sushkova, S. & Bhatnagar, A. (2021). Green synthesis of reduced graphene oxide-CoFe2O4 nanocomposite as a highly efficient visible-light-driven catalyst in photocatalysis and photo Fenton-like reaction. Materials Science and Engineering: B, 270, 115223.
[31] Esmaeilpour, M., Ghahraman Afshar, M., & Kazemnejadi, M. (2023). Preparation, characterization, and adsorption properties of bis-salophen schiff base ligand immobilized on Fe3O4@ SiO2 nanoparticles for removal of lead (II) from aqueous solutions. Applied Chemistry, 18(66), 125-146 [In Persian].
[32] Abbasi, N., Aberoomand Azar, P., Tehrani, M. S., & Mokhtari Aliabad, J. (2023). Study the absorption process of cadmium ions by Fe3O4/L-methionine/graphene oxide and graphene Aerogel nanocomposites from aqueous environments. Applied Chemistry [In Persian].
[33] Gholami, N., & Mahdavi, H. (2023). Synthesis and application of graphene oxide and sulfonated graphene oxide nanoparticles for using in nanofiltration membranes polyether sulfone. Journal of Applied Chemistry, 18(66), 225-244 [In Persian].
[34] Elsahwi, E. S., Ruda, H. E., & Dawson, F. P. (2020). Principles and design of an integrated magnetics structure for electrochemical applications. IEEE Transactions on Industry Applications, 56(5), 5645-5655.
[35] Bandaru, S. R., Roy, A., Gadgil, A. J., & van Genuchten, C. M. (2020). Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system. Water Research, 175, 115668.
[36] Sari, M. A., & Chellam, S. (2016). Reverse osmosis fouling during pilot-scale municipal water reuse: Evidence for aluminum coagulant carryover. Journal of Membrane Science, 520, 231-239.
[37] Jiang, S., Li, Y., & Ladewig, B. P. (2017). A review of reverse osmosis membrane fouling and control strategies. Science of the total environment, 595, 567-583.
[38] Ahmed, J., Jamal, Y., & Shujaatullah, M. (2020). Recovery of cooling tower blowdown water through reverse osmosis (RO): review of water parameters affecting membrane fouling and pretreatment schemes. Desalin. Water Treat, 189, 9-17.
[39] Gabelich, C. J., Ishida, K. P., Gerringer, F. W., Evangelista, R., & Kalyan, M. (2006). Control of residual aluminum from conventional treatment to improve reverse osmosis performance. Desalination, performance. Desalination, 190(1-3), 147-160.
[40] Hu, Y., Xu, Y., Xie, M., Huang, M., & Chen, G. (2022). Characterization of scalants and strategies for scaling mitigation in membrane distillation of alkaline concentrated circulating cooling water. Desalination, 527, 115534.
[41] Sánchez, A. S., Nogueira, I. B. R., & Kalid, R. A. (2015). Uses of the reject brine from inland desalination for fish farming, Spirulina cultivation, and irrigation of forage shrub and crops. Desalination, 364, 96-107.
[42] Jiménez-Arias, D., Sierra, S. M., García-Machado, F. J., García-García, A. L., Borges, A. A., & Luis, J. C. (2022). Exploring the agricultural reutilisation of desalination reject brine from reverse osmosis technology. Desalination, 529, 115644.
[43] Dehghanisanij, H., & Bozorgi, F. H. A., (2016). Improvement in sub-surface drip irrigation Pistachio under saline water use, 2nd World Irrigation Forum (WIF2), Chiang Mai, Thailand.
[44] Seifi, A., & Mirlatifi, M. (2020). Irrigation Water Use Efficiency and Yield of Pistachio under Aerated Subsurface Drip Irrigation System. Journal of Agricultural Science and Technology, 22(6), 1655-1670.
[45] Plappally, A. K., & Lienhard, J. H. (2013). Costs for water supply, treatment, end-use and reclamation. Desalination and Water Treatment, 51(1-3), 200-232.
[46] Tahamipour, M., Kalashami, M. K., & Chizari, A. (2015). Irrigation water pricing in Iran: the gap between theory and practice. International Journal of Agricultural Management and Development (IJAMAD), 5(1047-2017-1608), 109-116.
[47] Mobasheri, M. H., Hosseini-Yekani, S. A., & Amirnejad, H. (2019), Effect of Water Market Development and Improvement of Irrigation Technology on Farmers' Cropping Pattern and Income (Hashtgerd Plain, Alborz Province), Iranian Journal of Agricultural Economics and Development Research (IJAEDR), 50(4).
[48] Mohseni, S., Zare Mehrjerdi, M. R., Abdolahi Ezzatabadi, M., & Mehrabi Boshrabadi, H. (2022). Irrigation water demand management with emphasis on pricing policy. Water Policy, 24(7), 1095-1108